Что такое параллели и меридианы в географии? Меридиан нулевой: что это. Где проходит нулевой меридиан

Меридианы и параллели

Меридиа́ны и паралле́ли

Меридиа́ны и паралле́ли
координатные линии на карте или глобусе. Меридианы – это линии постоянной долготы, которые проходят через оба полюса планеты и указывают направление «север – юг», а параллели – линии постоянной широты, идущие параллельно экватору в направлении «запад – восток». Пересекаясь, эти линии образуют на карте сетку географических координат. Обычно проводят целочисленные меридианы и параллели, но для точного нанесения и снятия координат сетку можно сгустить до минут (а на крупномасштабных картах – даже до секунд). Для этого карты имеют минутную рамку, где отмечены доли градусов. В зависимости от способа определения различают астрономические, геодезические, географические и геомагнитные меридианы и параллели, а на небесной сфере, соответственно, – небесные меридианы и параллели.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "меридианы и параллели" в других словарях:

    Географическая энциклопедия

    Малые круги сферы, составленные пересечением ее с плоскостью, параллельной какой нибудь основной плоскости (горизонту, экватору, эклиптике); иначе круг, все точки которого имеют равную широту, склонение или высоту. Суточные П. звезд малые круги,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (истор.) Первоначальное понятие о К. можно встретить даже у дикарей, особенно живущих по берегам и о вам и имеющих более или менее ясное представление об окружающих их территорию местностях. Путешественники, расспрашивавшие эскимосов С. Америки и … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую либо её части на плоскость, получаемые в основном с целью построения карты. Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно… … Большая советская энциклопедия

    Пример картографической проекции проекция Меркатора Картографическая проекция математически определенный способ отображения поверхности эллипсоида на плоскости. Суть проекций связана с тем, что фигуру Земли … Википедия

    Пример картографической проекции проекция Меркатора Картографическая проекция математически определенный способ отображения поверхности эллипсоида на плоскости. Суть проекций связана с тем, что фигуру Земли эллипсоид, не развертываемый в… … Википедия

    Отображение всей поверхности земного эллипсоида или какой либо ее части на плоскость, получаемое в основном с целью построения карты. К. п. чертят в определенном масштабе. Уменьшая мысленно земной эллипсоид в Мраз, получают его геометрич. модель… … Математическая энциклопедия

    Меридиан(ы) меридианы и параллели координатные линии на карте или глобусе. Меридианы – это линии постоянной долготы, которые проходят через оба полюса планеты и указывают направление «север – юг», а параллели – линии постоянной широты, идущие… … Географическая энциклопедия

    Меридианы и параллели координатные линии на карте или глобусе. Меридианы – это линии постоянной долготы, которые проходят через оба полюса планеты и указывают направление «север – юг», а параллели – линии постоянной широты, идущие параллельно… … Географическая энциклопедия

Книги

  • , Гребенщиков Борис Борисович. Мало кто из рок-музыкантов не только достиг самых вершин славы, но и столь досконально изучил все, что касается творчества его предшественников и коллег. С 2005 года Борис Гребенщиков ведет…

Небесной сферой называется сфера произвольного радиуса, с центром в произвольной точке пространства, на которую спроектированы светила и параллельно перенесены в ее центр основные направления и плоскости Земли и наблюдателя на ней.

В зависимости от расположения центра сферы она называется: геоцентрической – центр совпадает с центром Земли; гелиоцентрической – центр находится в центре Солнца; топоцентрической – центр находится на поверхности Земли.

Для Земли основным направлением является ее ось , а основной плоскостью – экватор . Для места наблюдателя на Земле основным направлением является направление силы тяжести в точке М , которое называют отвесной линией. Основной плоскостью места наблюдателя является истинный горизонт – плоскость касательная к поверхности Земли в точке М , т. е. плоскость перпендикулярная отвесной линии. Долгота точки (М ) λ м определяет основную плоскость, которая называется меридианом наблюдателя .

Параллельный перенос отвесной линии точки М из точки О 1 в точку О (центр небесной сферы) определяет отвесную линию Zn небесной сферы. Точка Z называется зенитом наблюдателя (место наблюдателя на сфере), точка n надиром . Линия параллельная оси Земли p n p s называется осью мира P N P S , причем точки P N и P S называются полюсами мира .

Плоскость истинного горизонта в точке М на Земле, принесенная в центр сферы дает в сечении со сферой большой круг NES W, который называется истинным горизонтом и он делит сферу на надгоризонтную с точкой Z и подгоризонтную с точкой n части .

Плоскость экватора Земли qq , принесенная в центр сферы, дает в сечении со сферой большой круг QQ , который называется небесным экватором . Он делит сферу на северную с точкой P N и южную – P S части.

Плоскость географического меридиана наблюдателя p n Mqp s , перенесенная в центр сферы, дает в сечении со сферой большой круг ZP N NQ nP S SQ , который называется меридианом наблюдателя . Он делит сферу на восточную с точкой Е и западную с точкой W части.

Ось мира P N P S делит меридиан наблюдателя на полуденную часть, включающую точку Z (P N ZP S) и полуночную часть, включающую точку n (P N nP S волнистая линия).

Полюс мира, находящийся в надгоризонтной части сферы называется повышенным полюсом . Его наименование всегда одноименно с широтой места М на Земле.

Если из центра сферы провести направления на светила, то на ее поверхности получим точки С называемые видимыми местами светил .

Системы координат

В мореходной астрономии применяются следующие системы сферических прямоугольных координат небесной сферы: горизонтная, 1-ая экваториальная, 2-ая экваториальная и эклиптическая. Осями координат являются основные круги.

Горизонтная система координат. Эта система необходима для выполнения измерений навигационных параметров (высота светила или азимут на светило) на Земле. Координаты светила зависят от видимого суточного вращения небесной сферы (времени) и координат места наблюдателя на Земле.

Основное направление – отвесная линия.

Основные круги – меридиан наблюдателя и истинный горизонт.

Меридианом наблюдателя называется большой круг на небесной сфере, плоскость которого параллельна плоскости земного меридиана места наблюдателя.

Истинным горизонтом называется большой круг, плоскость которого перпендикулярна отвесной линии.

Вспомогательные круги – вертикал и альмукантарат.

Вертикалом называется половина большого круга, проходящая через точки зенит (Z ,) надир(n ) и светило (заданную точку).

Альмукантаратом называется малый круг, плоскость которого параллельна плоскости истинного горизонта.

Координаты – высота и азимут.

Высотой ( h ) называется дуга вертикала светила от истинного горизонта до светила в пределах от –90° до +90°. Знак минус для светил находящихся в подгоризонтной части сферы.

Высота светил, находящихся на меридиане наблюдателя, называется меридиональной высотой . Она обозначается буквой H и имеет наименование точки истинного горизонта, над которой находится светило N или S (рис. 2, светило С 2).

В мореходной астрономии используются три системы счета азимута:

Круговым азимутом (А кр ) N до вертикала светила, отсчитываемая в сторону Е, в пределах от 0° до 360°.

Полукруговым азимутом (А пк ) называется дуга истинного горизонта от полуночной части меридиана наблюдателя (N или S ) до вертикала светила, отсчитываемая в сторону Е или W , в пределах от 0° до 180° и имеет наименование: первая буква совпадает с наименованием широты места наблюдателя, вторая с направлением отсчета или с наименованием полусферы, где находится светило.

Четвертным азимутом (А чет ) называется дуга истинного горизонта от точки N или S до вертикала светила, отсчитываемая в сторону Е или W , в пределах от 0° до 90° и имеет наименование: первая буква совпадает с наименованием точки начала отсчета, вторая с направлением отсчета.

Кроме сферических координат светило может быть задано в полярных координатах относительно точки Z (зенита). Координатами являются зенитное расстояние и азимут.

Зенитным расстоянием называется дуга вертикала светила от точки зенит до светила в пределах от 0° до 180°.

Зенитное расстояние связано с высотой соотношением

Z = 90°– h (1)

Азимут определяется как угол при зените в полукруговом счете.

Первая экваториальная система координат. В этой системе одна координата светила не зависит от координат места наблюдателя, а вторая зависит от долготы места и времени.

Примечание. Следует помнить, что меридиан наблюдателя непосредственно связан с меридианом места наблюдателя, т. е. долготой места.

Основное направление – ось мира.

Основные круги – меридиан наблюдателя и небесный экватор.

Небесным экватором называется большой круг, плоскость которого перпендикулярна оси мира.

Вспомогательные круги – небесные меридианы и параллели.

Небесным меридианом называются половина большого круга, проходящего через полюса мира и заданное светило или точку на небесной сфере.

Небесными параллелями называются малые круги, плоскость которых параллельна плоскости небесного экватора.

Координаты – местный часовой угол и склонение.

Местным часовым углом ( t м ) W в пределах от 0° до 360°.

Так как отсчет часового угла ведется от меридиана наблюдателя, а он связан с меридианом места, то все часовые углы являются местными

Такой счет часовых углов называют астрономическим, и он имеет наименование W . Обычно для этого счета часовых углов наименование не пишут (в МАЕ все часовые углы W). При решении параллактического треугольника с помощью таблиц, используют часовые углы в практическом счете.

Практическим местным часовым углом называется дуга небесного экватора от полуденной точки меридиана наблюдателя до меридиана светила, отсчитываемая в сторону W или Е в пределах от 0° до 180°. Наименование часового угла одноименно с направлением отсчета.

Из всех местных часовых углов выделяется часовые углы для наблюдателя, находящегося на меридиане Гринвича (T М =0°), которые называют гринвичскими часовыми углами .

Склонением ( ) называется дуга меридиана светила от небесного экватора до светила в пределах от 0° до 90°.Наименование склонения одноименно с полюсом мира, к которому производится отсчет.

Кроме сферических координат светило может быть задано в полярных координатах относительно точки повышенного полюса мира. Координатами являются полярное расстояние и часовой угол.

Полярным расстоянием ( ) называется дуга меридиана светила от повышенного полюса мира до светила в пределах от 0° до 180° с наименованием полюса мира, к которому производится отсчет (разноименно с наименованием повышенного полюса мира).

Часовой угол определяется как угол при повышенном полюсе мира в астрономическом или практическом счете.

Вторая экваториальная система координат . В этой системе координаты светила не зависят от суточного движения светил (времени) и места наблюдателя на Земле. Поэтому 2-ая экваториальная система координат подобна географической системе координат.

Основным направлением является ось мира.

Основные круги – небесный экватор и меридиан точки Овна ().

Точкой Овна () называется точка на небесном экваторе, в момент перехода центра Солнца из южной в северную полусферу при его видимом годовом движении .

Положение точки Овна не зависит от суточного вращения небесной сферы. Поэтому в 1-ой экваториальной системе координат положение точки Овна определяется местным часовым углом точки Овна (t  м).

Вспомогательные круги те же, что в 1-ой экваториальной системе – небесные меридианы и небесные параллели.

Координатами являются – прямое восхождение и склонение

Прямым восхождением () называется дуга небесного экватора от точки Овна до меридиана светила, отсчитываемая в сторону обратную W часовым углам (или в сторону видимого годового движения Солнца) в пределах от 0° до 360°.

При расчете местных часовых углов светил с помощью МАЕ вместо прямого восхождения используется координата звездное дополнение.

Звездным дополнением () называется дуга небесного экватора от точки Овна до меридиана светила, отсчитываемая в сторону противоположную W часовых углов в пределах от 0° до 360°.

Склонение () то же, что в 1-ой экваториальной системе.

Так как 1-ая и 2-ая экваториальные системы отличаются только в одной координате (см. рис. 4), то переход от одной системе к другой выражается формулой

t = t св + св

Эта формула называется основной формулой времени.

(2-4). Параллактический треугольник и его решение, Графическое решение задач на небесной сфере, Таблицы ТВА-52 , Вычислительная схема и правила вычисления h и А.

Параллактическим треугольником называется сферический треугольник, в вершинах которого находятся точки повышенного полюс мира, зенита и светила.

Элементами этого треугольника являются:

При использовании основных формул сферической тригонометрии элементы треугольника должны быть всегда меньше 180°.

Основное достоинство параллактического треугольника заключается в том, что он связывает координаты светила с географическими координатами места наблюдателя.

Для решения сферического треугольника должны быть заданы 3 из 6 его элементов. Это сторона равная 90°– φ, сторона равная 90°–  и угол между ними равный t м в практическом счете.

Для получения значения высоты светила (h ) применим формулу косинусов к стороне ZC

sinh = sinφ sin + cosφ cos cost м (3)

Для получения значения азимута светила (А ) применим формулу котангесов (4-х рядом лежащих элементов) к углу А

ctgA =tg cosφ cosect м – sinφ ctgt м (4)

Можно получить другие формулы расчета азимута, используя в качестве аргумента высоту светила (h ) полученную по формуле (3).

Расчет азимута по аргументам φ,  и h .

Для получения значения азимута светила используем формулу косинусов к углу А .

Расчет азимута по аргументам , t м и h .

Для получения значения азимута светила используем формулу синусов

sinA / sin(90°– ) = sint м / sin(90°– h )

sinA = sin cost м sech (6)

Азимут получим в пределах от 0° до 90°, т. е. в четвертном счете. Правила определения наименования азимута, приведенные в МТ, достаточно сложные. Формулу обычно используют при фактических наблюдениях с одновременной фиксацией (с помощью гирокомпаса) наименования четверти горизонта, в которой измерена высота светила.

Решение параллактического треугольника выполняется по формулам сферической тригонометрии на калькуляторе или с помощью таблиц.

В настоящее время основным способом решения параллактического треугольника является его решение по формулам с помощью калькулятора, а вспомогательным – с помощью таблиц.

В IV в. до н. э. величайший мыслитель древности Аристотель доказал, что наша планета имеет форму, очень близкую к форме шара.

Примерно в то же время, наблюдая во время путешествий в различных местах видимое движение звезд и Солнца, древние ученые установили для ориентировки на земной поверхности определенные условные линии.

Отправимся в мысленное путешествие по поверхности Земли. Положение над горизонтом воображаемой оси мира, вокруг которой происходит суточное вращение небесного свода, будет для нас все время меняться. В соответствии с этим будет меняться и картина движения звездного неба.

Поехав на север, мы увидим, что звезды в южной части неба поднимаются каждую ночь на меньшую высоту. А звезды в северной части - в нижней кульминации - имеют большую высоту. Двигаясь достаточно долго, мы попадем на Северный полюс. Здесь вообще ни одна звезда не поднимается и не опускается. Нам будет казаться, что все небо медленно кружится параллельно горизонту.

Древние путешественники не знали, что видимое движение звезд является отражением вращения Земли. И они не бывали на полюсе. Но им необходимо было иметь ориентир на земной поверхности. И они выбрали для этой цели легко определяемую по звездам линию север - юг. Эта линия получила название меридиана.

Меридианы можно проводить через любые точки на поверхности Земли. Множество меридианов образует систему воображаемых линий, соединяющих Северный и Южный полюсы Земли, которые удобно использовать для определения местоположения.

Примем один из меридианов на начальный. Положение любого другого меридиана в этом случае будет известно, если указано направление отсчета и задан двугранный угол между искомым меридианом и начальным.

В настоящее время по международному соглашению условились считать начальным тот меридиан, который проходит через одну из старейших в мире астрономических обсерваторий - Гринвичскую обсерваторию, расположенную на окраине Лондона. Угол, образованный каким-либо меридианом с начальным, называют долготой. Долгота, например, меридиана Москвы 37° к востоку от Гринвича.

Чтобы отличить друг от друга точки, лежащие на одном и том же меридиане, пришлось ввести вторую географическую координату - широту. Широтой называют угол, который проведенная в данном месте поверхности Земли отвесная линия образует с плоскостью экватора.

Термины долгота и широта дошли до нас от древних мореходов, которые описывали длину и ширину Средиземного моря. Та координата, которая соответствовала измерениям длины Средиземного моря, стала долготой, а та, которая соответствовала ширине, стала современной широтой.

Нахождение широты, как и определение направления меридиана, тесно связано с движением звезд. Уже древние астрономы доказали, что высота полюса мира над горизонтом в точности равна широте места.

Предположим, что Земля имеет форму правильного шара, и рассечем ее по одному из меридианов, как на рисунке. Пусть на Северном полюсе стоит человек, изображенный на рисунке в виде светлой фигуры. Для него направление вверх, т. е. направление отвесной линии, совпадает с осью мира. Полюс мира находится у него прямо над головой. Высота полюса мира равна здесь 90 .

Так как видимое вращение звезд вокруг оси мира является отражением реального вращения Земли, то в любой точке Земли, как мы уже знаем, направление оси мира остается параллельным направлению оси вращения Земли. Направление же отвесной линии при переходе из точки в точку меняется.

Возьмем, например, другого человека (на рисунке - темная фигура). Направление оси мира у него осталось таким же, как и у первого. А направление отвесной линии изменилось. Поэтому высота полюса мира над горизонтом здесь не 90°, а значительно меньше.

Из простых геометрических соображений ясно, что высота полюса мира над горизонтом (на рисунке угол ft) действительно равна широте (угол ф).

Линия, соединяющая точки с одинаковыми широтами, получила название параллели.

Меридианы и параллели образуют так называемую систему географических координат. Каждая точка на земной поверхности имеет вполне определенную долготу и широту. И наоборот, если известна широта и долгота, то можно построить одну параллель и один меридиан, в пересечении которых получится одна единственная точка.

Понимание особенностей суточного движения звезд и введение системы географических координат позволили осуществить первое определение радиуса Земли. Оно было выполнено во второй половине III в. до н. э. известным математиком и географом Эратосфеном.

Принцип этого определения заключается в следующем. Пусть удалось измерить разность широт двух точек, лежащих на одном меридиане (см. рис.). Тем самым нам стал известен угол Дф с вершиной в центре Земли, который соответствует дуге меридиана L на поверхности Земли. Если теперь удастся измерить также и дугу L, то мы получим сектор с известной длиной дуги и соответствующим ей центральным углом. На рисунке этот сектор показан отдельно. Путем несложных вычислений можно получить величину радиуса этого сектора, который и является радиусом Земли.

Эратосфен, грек по национальности, жил в богатом египетском городе Александрии. К югу от Александрии находился другой город - Сиена, который в наши дни называется Асуаном и где, как известно, с помощью Советского Союза сооружена знаменитая высотная плотина. Эратосфен знал, что Сиена обладает интересной особенностью. В полдень одного из июньских дней Солнце над Сиеной бывает настолько высоко, что его отражение видно на дне даже очень глубоких колодцев. Отсюда Эратосфен заключил, что высота Солнца в Сиене в этот день равна точно 90°. Кроме того, раз Сиена лежит строго к югу от Александрии, то они находятся на одном меридиане.

Для необычного измерения Эратосфен решил воспользоваться скафисом - чашеобразными солнечными часами со штырьком и делениями внутри них. Установленные вертикально, эти солнечные часы по тени от штырька дают возможность измерить высоту Солнца над горизонтом. И в полдень того самого дня, когда Солнце над Сиеной поднялось настолько высоко, что все предметы перестали отбрасывать тени. Эратосфен измерил его высоту на городской площади Александрии. Высота Солнца в Александрии, по измерениям Эратосфена, оказалась равной 82° 48". Стало быть, разность широт Александрии и Сиены составляет 90° 00" - 82° 48" = 7° 12".

Оставалось измерить расстояние между ними. Но как это сделать? Как измерить на поверхности Земли расстояние, равное в современных единицах примерно 800 км?

Трудности подобного предприятия были тогда буквально неисчислимы.

Действительно, как изготовить такую гигантскую линейку, с помощью которой можно было бы произвести измерения? Как сделать, чтобы на протяжении 800 км эта линейка укладывалась строго по меридиану, без всяких перекосов?

Необходимые данные о расстоянии между городами пришлось взять из рассказов купцов, водивших торговые караваны из Александрии в Сиену. Купцы говорили, что расстояние между ними составляет примерно 5000 греческих стадиев. Эратосфен принял это значение за истинное и, использовав его, вычислил величину радиуса Земли.

Если сравнить полученную Эратосфеном величину с современными данными, то получится, что он ошибся относительно немного - всего только на 100 км.

Так, с III в. до н. э., со времени Эратосфена, переплелись пути астрономии и геодезии - другой древней науки, изучающей форму и размеры как всей Земли в целом, так и отдельных ее частей.

Методы астрономических определений широт развивались и совершенствовались. Это было особенно важно, в частности, именно в связи с необходимостью более тщательного определения размера Земли. Ибо, начиная с того же Эратосфена, было уяснено, что задача определения размера Земли распадается на две части: астрономическую, т. е. определение разности широт, и геодезическую, т. е. определение длины дуги меридиана. Эратосфен сумел решить астрономическую часть задачи, и принципиально тем же путем шли многочисленные его последователи.

Мы еще будем иметь случай рассказать о более точных измерениях размера Земли, а пока, освоившись с определением широт, займемся делом значительно более сложным - определением географических долгот.

Глобус и географические карты «опутаны» своеобразной сеткой, состоящей из пересекающихся линий. Эти линии появились на картах не сразу, поскольку в древности карты напоминали простейшие планы.

Земной шар и плоскости его сечения

Земля - чуть сплюснутый у полюсов шар. Шар можно рассекать плоскостями по разным направлениям. Его можно рассечь, во-первых, подобно тому, как апельсин разделяют на дольки, и, во-вторых, так, как апельсин разрезают ножом поперёк долек. При любом способе рассечения шара плоскостями получаются круги, границами которых являются окружности. Диаметр кругов наибольший, если плоскости сечения проходят через центр шара. Диаметры таких кругов равны диаметру шара.

Обратимся к и мысленно рассечём земной шар плоскостями, перпендикулярными оси вращения Земли. На поверхности глобуса появляются параллельные друг другу окружности. Эти окружности так и называют параллели (от греческого слова parallclos - идущий рядом). Самая длинная и главная параллель экватор, его длина 40 076 километров.

Экватор находится на равном расстоянии от полюсов планеты и делит Землю на Северное и Южное полушария. Длина других параллелей уменьшается по направлению от экватора на юг и на север. Все точки, лежащие на одной параллели, одинаково удалены от экватора. Линии параллелей показывают направление запад-восток.

Если рассечь земной шар плоскостями, которые проходят через ось вращения Земли, то на поверхности глобуса появятся меридианы - полуокружности, соединяющие Северный и Южный полюсы Земли. Они перпендикулярны параллелям и показывают направление север-юг. Само слово «меридиан» означает «полуденный» (от латинскою слова meridianus), поскольку направление всех меридианов совпадает с направлением тени от предметов в полдень.

Все меридианы имеют одинаковую длину - 20 005 километров. По договорённости между странами главным, начальным меридианом считается меридиан, проходящий через Гринвичскую обсерваторию в пригороде Лондона. Поэтому этот меридиан ещё называют Гринвичским. Гринвичский меридиан и его продолжение на противоположной стороне
земного шара делят Землю на Западное и Восточное полушария.

Параллели и меридианы на картах

Параллели на глобусе - окружности, а меридианы - полуокружности. Но на из-за искажений при перенесении выпуклой поверхности Земли на плоскость изображение этих линий выглядит по-другому. Какой бы вид ни имели параллели и меридианы, на любой карте направления на восток и запад определяются только по направлению параллелей, а на север и юг - только по направлению меридианов. Таким образом, параллели и меридианы позволяют ориентироваться, то есть определять направления на стороны горизонта.

Линий параллелей и меридианов на глобусе и картах можно провести сколько угодно. Но через одну точку поверхности проходит только один меридиан и одна параллель. Положение любой точки на плоском листе можно охарактеризовать двумя числами координатами, которые показывают положение этой точки относительно краёв листа.

На шарообразной поверхности координаты точек определяют по отношению к экватору и начальному меридиану. Для этого используют систему параллелей и меридианов.

Сегодня на Земле не осталось ни одного участка, который бы не изучил человек или хотя бы не посетил! Чем больше информации появлялось о поверхности планеты, тем актуальнее вставал вопрос об определении местонахождения того или иного объекта. Меридианы и параллели, которые являются элементами градусной сетки, помогают находить географический адрес искомой точки и облегчают процесс ориентирования по карте.

История картографии

Человечество не сразу пришло к такому простому способу определения координат объекта, как вычисление его долготы и широты. Знакомые всем нам со школы, основные линии постепенно появлялись в источниках картографических знаний. Ниже располагается информация о нескольких ключевых этапах в истории становления таких наук, как география и астрономия, которые привели цивилизацию к созданию современной карты с удобной градусной сеткой.

  • Одним из «родоначальников» естественных наук считается - Аристотель, который первым доказал, что наша планета имеет шарообразную форму.

  • Древние путешественники Земли были очень наблюдательными, и они заметили, что на небе (по звёздам), легко прослеживается направление С (север) - Ю (юг). Вот эта линия и стала первым «меридианом», аналог которой сегодня можно найти на самой простой карте.
  • Эратосфен, который больше известен как «отец науки географии», сделал очень много маленьких и больших открытий, которые повлияли на становление геодезии. Он первым использовал скафис (древние солнечные часы) для вычисления высоты солнца над территорией разных городов и заметил существенную разницу в своих замерах, которые зависели от времени суток и сезона. Эратосфен выявил связь между такими науками, как геодезия и астрономия, тем самым сделав возможным проведение многих исследований и замеров земных территорий при помощи небесных тел.

Градусная сетка

Многочисленные меридианы и параллели, пересекаясь на карте или глобусе, соединяются в географическую сетку, состоящую из «квадратов». Каждая её клетка ограничена линиями, которые имеют свой градус. Таким образом, при помощи этой сетки можно быстро найти искомый объект. Структура многих атласов построена так, что на отдельных страницах рассматриваются разные квадраты, что позволяет системно изучать любую территорию. С развитием географических знаний совершенствовался и глобус. Меридианы и параллели имеются на самых первых моделях, которые пусть и не содержали всей достоверной информации об объектах Земли, но уже давали представление о приблизительном местонахождении искомых точек. Современные карты имеют обязательные элементы, из которых состоит градусная сетка. При помощи нее определяются координаты.

Элементы градусной сетки

  • Полюса - Северный (вверху) и Южный (внизу), являются точками, в которых сходятся меридианы. Они являются местами выхода виртуальной линии, которая называется осью.
  • Полярные круги. С них начинаются границы заполярных областей. Полярные круги (Южный и Северный) расположены дальше 23 параллелей по направлению к полюсам.
  • Он делит поверхность Земли на Восточное и и имеет ещё два названия: Гринвичский и Начальный. Все меридианы имеют одинаковую длину и на поверхности глобуса или карты соединяют полюса.
  • Экватор. Он является сориентированной с З (запада) на В (восток), которая разделяет планету на Южное и Северное полушария. Все остальные линии, параллельные экватору, имеют разные размеры - их длина уменьшается к полюсам.
  • Тропики. Их тоже два - Козерога (Южный) и Рака находятся на 66-й параллели к югу и северу от экватора.

Как определить меридианы и параллели искомой точки?

Любой объект на нашей планете имеет свою широту и долготу! Даже если он очень-очень маленький или, наоборот, довольно большой! Определять меридианы и параллели объекта и находить координаты точки - одно и то же действие, так как именно градус основных линий определяет географический адрес искомой территории. Ниже предлагается план действий, которым можно воспользоваться при вычислении координат.

Алгоритм адреса объекта на карте

  1. Уточните правильность географического названия объекта. Досадные ошибки случаются из-за банальной невнимательности, например: ученик ошибся в названии искомой точки и определил не те координаты.
  2. Приготовьте атлас, острый карандаш или указку и увеличительное стекло. Эти инструменты помогут более точно определить адрес искомого объекта.
  3. Выберите самую крупномасштабную карту из атласа, на которой нанесена нужная географическая точка. Чем мельче масштаб карты, тем больше погрешностей возникает при вычислениях.
  4. Определите отношение объекта к основным элементам сетки. Алгоритм данной процедуры, представлен после пункта: «Вычисление размеров территории».
  5. Если искомая точка не находится непосредственно на обозначенной на карте линии, то найдите ближайшие, которые имеют цифровое обозначение. Градус линий, обычно, указывается по периметру карты, реже - на линии экватора.
  6. При определении координат важно выяснить, через какое количество градусов расположены параллели и меридианы на карте и правильно вычислить искомые. Необходимо помнить, что элементы градусной сетки, кроме основных линий, можно провести через любую точку поверхности Земли.

Вычисление размеров территории

  • Если необходимо вычислить размеры объекта в километрах, то необходимо вспомнить, что длина одного градуса линий сетки равняется - 111 км.
  • Для определения протяжённости объекта с W на E (в случае если он полностью располагается в одном из полушарий: Восточном или Западном) достаточно из большего значения широты одной из крайних точек, вычесть меньшее и умножить полученное число на 111 км.
  • Если нужно вычислить длину территории с N на S (только в том случае, если она вся расположена в одном из полушарий: Южном или Северном), то необходимо от большего градуса долготы одной из крайних точек, вычесть меньший, затем умножить полученную сумму на 111 км.
  • Если по территории объекта проходит Гринвичский меридиан, то для вычисления его длины с W на E градусы широт крайних точек данного направления складываются, затем их сумма умножается на 111 км.
  • Если на территории определяемого объекта находится экватор, то для определения её протяжённости с N на S необходимо сложить градусы долготы крайних точек этого направления, а полученную сумму умножить на 111 км.

Как определять отношение объекта к основным элементам градусной сетки?

  • Если объект находится ниже экватора, то его широта будет только южной, если выше - северной.
  • Если искомая точка расположена правее начального меридиана, то её долгота будет восточной, если левее - западной.
  • Если объект находится выше 66-го градуса северной или южной параллели, то он входит в соответствующую полярную область.

Определение координат гор

Так как многие горные системы имеют большую протяжённость в разных направлениях, а меридианы и параллели, пересекающие такие объекты, имеют различные градусные величины, то процесс определения их географического адреса сопровождается многими вопросами. Ниже предлагаются варианты вычисления координат высоких территорий Евразии.

Кавказ

Самые живописные горы расположены между двумя водными акваториями материка: от моря Чёрного до Каспия. Меридианы и параллели имеют разные градусы, так какие же считать определяющими для адреса данной системы? В данном случае ориентируемся на самую высшую точку. То есть координаты горной системы Кавказ - это географический адрес пика Эльбрус, который равен - 42 градусам 30 минутам северной широты и 45 градусам восточной долготы.

Гималаи

Самая высокая система гор на нашем материке - Гималаи. Меридианы и параллели, имеющие различную градусную величину, пересекают этот объект так же часто, как и вышеназванный. Как правильно определить координаты этой системы? Поступаем так же, как и в случае с Уральскими горами, ориентируемся на высшую точку системы. Таким образом, координаты Гималаев совпадают с адресом пика Джомолунгма, и это - 29 градусов 49 минут северной широты и 83 градуса 23 минуты и 31 секунда восточной долготы.

Уральские горы

Самые протяжённые на нашем материке - Уральские горы. Меридианы и параллели, имеющие различные градусные величины, пересекают данный объект в различных направлениях. Для определения координат Уральских гор необходимо найти их центр на карте. Эта точка и будет являться географическим адресом данного объекта - 60 градусов северной широты и столько же восточной долготы. Подобный способ определения координат гор является приемлемым для систем, имеющих большую протяжённость в одном из направлений или в обоих.