Общая характеристика неметаллов. Химические элементы организма (неметаллы) Роль неметаллов в организме человека

На грани химии, биологии и медицины возникла новая научная область бионеорганическая химия. Бионеорганическая химия рассматривает роль металлов в возникновении и развитие различных процессов в здоровом и больном организме, создает новые эффективные препараты на основе металлорганических соединений, активно участвует в борьбе за сохранение здоровья людей и продление человеческой жизни. Особенно чутко организм реагирует на изменение концентрации микроэлементов, т.е. элементов, участвующих в организме в количестве меньше одного грамма на 70 килограмм массы человеческого тела. К таким элементам относятся медь, цинк, марганец, кобальт, железо, никель, молибден и другие.

Файлы: 1 файл

МЕТАЛЛЫ И НЕМЕТАЛЛЫ В ЖИЗНИ ЧЕЛОВЕКА

На грани химии, биологии и медицины возникла новая научная область бионеорганическая химия. Бионеорганическая химия рассматривает роль металлов в возникновении и развитие различных процессов в здоровом и больном организме, создает новые эффективные препараты на основе металлорганических соединений, активно участвует в борьбе за сохранение здоровья людей и продление человеческой жизни. Особенно чутко организм реагирует на изменение концентрации микроэлементов, т.е. элементов, участвующих в организме в количестве меньше одного грамма на 70 килограмм массы человеческого тела. К таким элементам относятся медь, цинк, марганец, кобальт, железо, никель, молибден и другие.

Вода – универсальный растворитель. Она носит в себе следы всего, с чем соприкасается. Известно около 70 000 веществ, которые встречаются в воде в качестве примесей. Некоторые из этих примесей оказывают вредное влияние на человеческий организм, превышения их предельно допустимой концентрации (ПДК) нужно всячески избегать.

Свинец

В старых зданиях иногда встречаются свинцовые водопроводные трубы. Некоторые американские токсикологи считают, что свинцовый водопровод Римской империи послужил причиной ее падения. Свинцовый водопровод был в Московском Кремле во времена правления Ивана Грозного. Вода, текущая из таких труб, становится опасной для жизни, поскольку свинец – токсичный металл. Он откладывается в костях скелета и влияет на центральную и периферическую нервную систему. Это особенно опасно для детей младше 6 лет, включая период внутриутробного развития. Есть данные о том, что свинец способствует развитию новообразований в почках. Помимо этого, свинец угнетает иммунитет. Использование этилированного бензина в качестве топлива приводит к загрязнению окружающей среды свинцом.

Ртуть

Ртуть – уникальный металл. Это единственный металл-жидкость, который может испаряться. Существуют микроорганизмы, способные включать ртуть в органические соединения. В природе ртуть бывает в самородном, жидком виде, а также входит в состав минералов. Некоторая часть ртути свободно испаряется из трещин в земной коре. Около половины всей используемой ртути приходится на батарейки, люминесцентные лампы, выключатели и измерительные приборы.

Ртуть и ее соединения нарушают белковый обмен, поражают нервную систему, печень, почки, желудочно-кишечный тракт, при вдыхании – дыхательные пути. Особенно опасны выбросы в воду с образованием метилртути – соединения более опасного, чем сама ртуть. Оно способно накапливаться в организме и вызывать болезнь Минамата. Болезнь так названа по названию озера Минамата в Японии, куда промышленная компания долгое время сливала ртуть. Болезнь была обнаружена в 1956 году. Ее симптомы – нарушение моторики, парестезия в конечностях, ослабление зрения и слуха. В тяжелых случаях – паралич.

Кадмий

В норме кадмий в небольших количествах присутствует в здоровом человеческом организме. Однако он токсичен, и потому его избыток легко становится губительным. Кадмий обладает способностью накапливаться, хроническое отравление приводит к анемии и болезни костей. Растворимые соединения кадмия поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Кадмий изменяет на многие гормоны и ферменты, необходимые для нормальной работы организма. Источником кадмиевого загрязнения являются выбросы цветной и черной металлургии, ТЭЦ и угледобычи.

Цинк

В природе цинк существует только в составе полиметаллических руд. В древней Греции был известен сплав цинка с медью – латунь. Цинк – необходимый для нормальной жизнедеятельности элемент. Однако его переизбыток вызывает поражение почек. Есть экспериментальные данные о его токсическом воздействии на кровь и сердце.

Никель

Никель участвует в регуляции обмена ДНК и является необходимым для человека микроэлементом. Недостаток его ведет к нарушению обмена веществ и снижению иммунитета. Но избыток никеля может быть вреден для здоровья. При повышении концентрации никеля в организме могут появиться аллергические реакции в виде кожной сыпи или аллергического насморка. В Германии 15% людей имеет аллергию на никель. При избытке никеля также возможна анемия, повышенная возбудимость. Поскольку никель влияет на ДНК, а также РНК, при хронической интоксикации появляется риск развития новообразований в легких, в почках, на коже. Никель могут выделять в воду электрические чайники с открытым нагревательным элементом.

Хром

Хром - это металл. Он твердый и ломкий и очень устойчив к коррозии. Он серебристо-белый, а после полировки приобретает блеск. Он плохо проводит электричество и тепло.

Ученые Национальных институтов здравоохранения США получили данные о том, что содержащийся в питьевой воде хром может вызвать рак. Были проведены лабораторные опыты над животными. Выяснилось, что, хром, который содержится в питьевой воде, может вызвать рак. Такие данные были получены в ходе лабораторных наблюдений за животными, получавшими воду с высоким содержанием хрома. У крыс появлялись злокачественные опухоли полости рта, у мышей – рак тонкой кишки. Ученые считают, что хром 6 (шестивалентный) может вызвать у людей рак легких.

Железо

Железо – важный микроэлемент, участвующий в кроветворении и внутриклеточном обмене. Железо почти всегда встречается в природной воде, как на поверхности, так и во взятой из скважины. Больше всего железа в болотных водах. В систему водоснабжения железо попадает из-за коррозии труб. Норма содержания железа в воде – не больше 0,3 мг/л. Высокое содержание железа в воде неблагоприятно для кожи. Избыток железа может изменять состав крови, вызывать аллергические реакции, железо накапливается в поджелудочной железе, почках, миокарде, иногда в щитовидной железе, мышцах и эпителии языка.

Медь

Медь – это пластичный металл с невысокой плотностью. Обладает высокой теплопроводностью.

Медь необходима для высших растений, для животных и для человека, поэтому недостаток меди нежелателен, однако в питьевой воде не должно содержаться больше меди, чем 1-1,5 мг/л. Повышение концентрации меди в питьевой воде вызывает поражение слизистых оболочек почек и печени.

Молибден

Молибден входит в состав человеческого организма. Но избыток его в питьевой воде может стать причиной ослабления иммунитета, изменений функций костного мозга, тимуса и селезенки. А при наличии сопутствующего недостатка в организме кальция избыток молибдена ведет к подагре (ревматическое заболевание суставов, связанное с отложением солей, может сопровождаться опуханием и деформацией суставов).

Марганец

Марганец хорошо знаком нам всем в виде марганцовки, как называют в быту перманганат калия, обладающей антисептическими свойствами. Марганец – необходимый микроэлемент, участвует в образовании костей, в кроветворении и тканевом дыхании, в жировом и углеводном обмене, поддерживает репродуктивные функции. При недостатке марганца наблюдается рвота, изменение цвета волос, замедляется сращивание костей при переломах.

Допустимое содержание марганца в водопроводной питьевой воде – 0,1 мг/л. Это больше, чем в Европе, но в пять раз меньше, чем в Америке. При повышении содержания марганца возможно развитие анемии, нарушение функционального состояния центральной нервной системы.

Фтор

Название «фтор» восходит к греческому слову φθόρος («разрушение»). Фтор в своем природном виде – чрезвычайно ядовитый газ. При этом фтор – необходимый для человека микроэлемент. В организме человека фтор существует в виде соединения фторапатита и содержится в эмали зубов и костях. Если фтора в воде недостаточно (меньше 0,5 мг/л), повышается опасность кариеса.

Но избыток фтора тоже опасен. Если в воде его слишком много (более 1,0 мг/л), это приводит к флюорозу. Флюороз проявляется в виде крапинок или пятен на зубной эмали, изменяется костная ткань (остеосклероз), кости деформируются, связочный аппарат обызвествляется. Это происходит из-за того, что при избытке фтора, поступающего в организм, соли фтора начинают откладываться в костях и зубах и замещают растворимые соединения кальция нерастворимыми соединениями кальция и фтора. Особенно опасен избыток фтора для детей, у которых коренные зубы еще находятся в стадии формирования. При небольшом превышении нормы фтора поражаются только резцы, при большом – все зубы. Поражение костей происходит при сильном переизбытке фтора – свыше 6 мг/л. Хорошая же новость заключается в том, что если уменьшить поступление фтора в организм, симптомы флюороза уменьшаются.

Бром

Если ртуть – единственный жидкий металл, то бром – единственный жидкий неметалл. В простом виде это – ядовитая красно-бурая жидкость с неприятным запахом. Бром широко распространен в природе в виде соединений. В организме человека бром содержится в количестве примерно 0,2 г. Он обнаруживается в жидкостях организма: крови, слюне и моче, а также в печени и в мозге.

Препараты брома оказывают снотворное и успокаивающее действие.

Избыточное содержание микроэлемента бром в организме может привести к кожному заболеванию – бромодерме (высыпания на коже в виде бляшек или пузырей), а также нарушить работу нервной системы. Недостаток брома способствует возникновению бессонницы, к снижению уровня роста эритроцитов в крови.

Источником поступления бромидов могут быть грунтовые или подземные воды либо сточные воды предприятий химической промышленности.

Йод

Йод не нуждается в представлении. Название его на греческом языке (ιώδης) значит «фиолетовый». В нормальном виде представляет собой кристаллы черного цвета с фиолетовым металлическим отливом. В природе изредка встречается в виде минерала, но такие находки можно по пальцам пересчитать – в термальных источниках Везувия и на итальянском острове с красивым названием Вулькано. Йод находится в большом количестве в морской воде в виде иодидов (буква «и» в начале этого слова не ошибка, «йод» - это бытовое название, а «официально» в таблице Менделеева этот элемент называется именно так – «иод»).

Йод – необходимый микроэлемент, он присутствует во всех живых организмах. У животных и человека йод входит в состав вырабатываемых щитовидной железой гормонов, которые регулируют развитие организма и обмен веществ. Дефицит йода опасен, в результате могут развиться такие заболевания, как эндемический зоб, кретинизм и гипотиреоз. В организме человека содержится 12-20 мг йода, суточная потребность в йоде составляет около 0,2 мг.

Йод токсичен. Смертельная доза – 2-3 г. Избыток йода вызывает поражение почек и сердечнососудистой системы, появляется общая слабость, головная боль, рвота, понос, бурый налет на языке, боли в сердце и учащение пульса.

Ветер со стороны моря и испарения приносят в атмосферу некоторое количество йода, которое затем захватывается дождем и вместе с ним попадает в поверхностные воды. Также йод выщелачивается природными водами из магматических пород. Третий источник йода – воды нефтяных месторождений и сточные воды химической и фармацевтической промышленности.

Бор

Бор мы все знаем «в лицо» благодаря одному из его соединений – борной кислоте, которая применяется в медицине как дезинфицирующее средство и входит в состав некоторых лекарств. В свободном состоянии бор – бесцветное, серое или красное кристаллическое или аморфное вещество. Роль бора в организме человека мало изучена. Бор обнаружен в костной ткани, в мышцах и в крови. Основной источник бора – пища, с нею человек ежедневно получает 1-3 мг этого элемента. Безопасная доза для взрослого человека составляет 13 мг.

Соединения бора использовались не так давно как средства для снижения веса, однако обнаружилось, что вес снижался вследствие вызванного бором обезвоживания клеток, что вредно для организма. Борные соединения быстро всасываются, но медленно выделяются из организма. Таким образом, бор накапливается и в результате возможна борная интоксикация, которая проявляется рвотой, водянистым стулом, потерей аппетита и «борным псориазом» – кожной сыпью с упорным шелушением. Также известен борный энтерит – нарушение процессов пищеварения при длительном воздействии соединений бора.

В природные воды бор поступает из подземных вод, обогащенных бором за счет содержащих бор осадочно-метаморфических пород (борацит, бура, колеманит и др.). Также насыщены бором сточные воды некоторых производств (например, кожевенного, керамического) и бытовые сточные воды со стиральными порошками. Бор содержится в некоторых удобрениях и может попадать в воду из почв.

Мышьяк

Русское название мышьяка связано с использованием его для истребления мышей и крыс. Мышьяк чрезвычайно токсичен. При этом он является необходимым микроэлементом и присутствует во всей живой природе. В теле человека мышьяк содержится в количестве 0,08-0,2 мг/кг.

  1. 1. Биологическая роль неметаллов в жизни человека
  2. 2. Неметаллы - это простые вещества К типичным неметаллам относятся газы и жидкости. Неметаллы в отличии от металлов на много хуже проводят электрический ток, существенно отличаются по физико-механическим свойствам и температуре перехода в агрегатные состояния.
  3. 3. Кислород Кислород входит в состав всех жизненно важных органических веществ: белков, жиров, углеводов и др. Без кислорода невозможны многочисленные и чрезвычайно важные жизненные процессы, например дыхание, окисление аминокислот, жиров, углеводов. Обычное содержание кислорода в воздухе (около 21%) создает необходимое парциальное давление кислорода, благодаря которому ткани через легкие и кровь насыщаются кислородом. Снижение в воздухе содержания кислорода до 16-18% не оказывает существенного влияния. При снижении содержания кислорода да 14% появляются признаки кислородной недостаточности, а снижение до 9% очень опасно для жизни.
  4. 4. Озон Для человека озон сильно токсичен. Кроме того, он крайне взрывоопасен даже в низких концентрациях. Токсичность озона усугубляется тем, что существует привыкание к запаху озона. Обеззараживающее действие озона связано с интенсивным образованием им супероксид-радикалов, которые быстро разрушают оболочки клеток. Действие озона очень эффективно при дезинфекции воды.
  5. 5. Водород Вода – важнейшее соединение водорода в живом организме. Основные функции воды следующие: -Вода, обладающая высокой теплоемкостью, обеспечивает поддержание постоянства температуры тела. -Вода – важная среда организма. -Вода поддерживает кислотно-щелочной баланс в организме. Важным соединением водорода является и пероксид водорода. Пероксид окисляет липидный слой мембран клеток, разрушая его. При обработке небольших ран 3%-ным раствором перикиси выделяется кислород, при этом образуется пена, благодаря которой частицы тканевого распада вымываются из раны. Также пероксид водорода обладает кровеостанавливающим действием для мелких кровотечений.
  6. 6. Фосфор Фосфор входит в состав скелета животных, в состав зубов, в состав белков, нуклеиновых кислот, нуклеотидов и др. биологически активных соединений. Фосфатная буферная система – основная буферная система плазмы крови, сахара и животные кислоты могут быть использованы организмом только после фосфорилирования. Ожоги горящим фосфором крайне опасны, т.к. образующийся при горении оксид вызывает ожог прежде всего за счет большого количества тепла, выделяющегося при реакции оксида с влагой на коже. Образующаяся ортофосфорная кислота проникает в глубь соединительной ткани и вызывает отек из-за большого прилива межклеточной жидкости.
  7. 7. Кремний Кремний относится к примесным элементам: его содержание в организме не так уж велико – всего 0.001%. Кремний обнаружен в печени, надпочечниках, волосах и хрусталике глаза. Так как оксид кремния нерастворим в воде, то в организм человека кремний поступает через вдыхаемый пылеобразный оксид. При повышенном его содержании в пыли возникает силикоз – тяжелое заболевание легких.

Неметаллы-органогены (О, С, Н, N, P, S), а также галогены образуют главные биогеохимические циклы природы. Простые неорганические соединения этих неметаллов (H2 O, CO, CO2 , NH3 , NO2 , SO2 , H2 SO4 , Н3 РО4 и др.) являются продуктами жизнедеятельности человека и животных. Фрагментами этих циклов являются превращения одних соединений органогенов в другие с участием различных видов бактерий, например, в почве осуществляются переходы H2 → H2 O, CO → CO2 , N2 → NH3 , NH3 → NO2 , NO3 - → NO2 , NO3 - → NH3 , S → S2 O3 2- → SO2 → SO4 2- . Располагая элементы-органогены в порядке убывания их содержания (в масс.%), получим: O > C > H > N > P > S. Согласно именно этому ряду, а не традиционному обращению к группам Периодической Системы, рассмотрим свойства неметаллов-органогенов.

4.1 . Кислород

Кислород – это элемент, обеспечивающий жизнь на Земле. В атмосфере находится около 20,8% кислорода. 0стальные компоненты воздуха – это преобладающий азот N2 (78,08%), а также Ar (0,93%), CO2 (0,02 – 0,04%), Ne (1,92·10-3 %), He (5,24·10- 4 %), Kr (1,14 ·10-4 %), H2 (5,0· 10-5 %), Xe (8,7· 10-6 %). Надо отметить, что содержание ки-

слорода в атмосфере сохраняется удивительно постоянным, несмотря на все окислительные процессы дыхания и горения, протекающие на Земле. Главным фактором, поддерживающим постоянство содержания кислорода а атмосфере Земли, является фотосинтез, причем главный вклад вносят не наземные зеленые растения, а планктон и водоросли мирового океана, на долю которых приходится около 80% выделяемого кислорода. Вообще, жизнь на Земле возможна лишь в достаточно узком интервале содержания кислорода в атмосфере: от 13 до 30%. При содержании кислорода менее 13% аэробные существа (т.е. использующие в своей жизнедеятельности кислород) погибают, а при более высоком, чем 30%, процессы окисления и горения идут настолько интенсивно, что может загореться даже мокрая тряпка, а первый же удар молнии сжег бы все на Земле дотла.

Для многочисленных живых организмов важную часть метаболизма (обмена веществ) составляет дыхательный цикл, который приводит к быстрому образованию многих веществ. Так, в выдыхаемом воздухе, кроме СО2 , в небольших количествах содержатся углеводороды, спирты, аммиак, муравьиная кислота НСООН, уксусная кислота СН3 СООН, формальдегид НСНО, иногда ацетон (СН3 )2 СО. При дыхании человека на высоте 10 км в разреженном воздухе из-за недостатка в нем кислорода в выдыхаемой смеси газов резко возрастает содержание аммиака, аминов, фенола, ацетона и даже появляется сероводород.

Без кислорода невозможны многочисленные и чрезвычайно важные жизненные процессы, в особенности дыхание. Только немногие растения и простейшие животные могут обходиться без кислорода и поэтому носят название анаэробных. В живых организмах кислород расходуется на окисление различных веществ, причем главный процесс – реакция кислорода с атомами водорода с образованием воды, в результате которой выделяется значительное количество энергии. Аэробные организмы получают энергию также за счет окисления питательных веществ в клетках и тканях до СО2 , Н2 О,

(NH2 )2 CO.

В процессе нормального дыхания поступающий в легкие молекулярный кислород восстанавливается до воды: О2 + 4Н+ + 4е 2Н2 О, причем ионы Н+ вместе с электронами высвобождаются при потере органическим субстратом организма атомов Н: [субстрат(4Н)] → 4Н + субстрат → 4Н+ + 4е + субстрат. При патологии происходит неполное восстановление: О2 + 2Н+ + 2е Н2 О2 или О2 + е О2 - . Этот радикал называ-

ется супероксид-радикалом (СОР). Он может быть полезным, когда разрушает бесконтрольно растущие клетки, но может быть и очень токсичным, когда разрушает клеточные мембраны здоровых, необходимых организму клеток. Кроме этого, вредное действие СОР состоит в том, что он инактивирует ферменты, деполимеризует полисахариды, вызывает одиночные разрывы структуры ДНК. В промежуточном медленном одноэлектронном восстановлении О2 до СОР могут принимать участие любые вещества организма с подходящим потенциалом. При этом образуется Н2 О2 , который в следующей стадии одноэлектронного восстановления даёт гидроксид-радикал ОНс высокой реакционной способностью, быстро окисляющий любое вещество клетки. Гидрофобная молекула О2 легко проходит внутрь клетки через гидрофобные липидные мембраны и начинает окислять органические вещества до радикалов О2 - и ОН. Эти полярные радикалы оказываются «запертыми» в клетке, так как не могут выйти обратно через клеточные мембраны. Для погашения их «агрессивности» служат специальные ферменты супероксиддисмутаза, каталаза и пероксидаза. Кроме этого, есть низкомолекулярные вещества – антиоксиданты (например, витамины А и Е), которые неферментативно обезвреживают эти опасные частицы. СОР, например, активно связывается также ионами Fe(3+). Иногда выделение СОР полезно, например, противоопухолевые антибиотики (блеомицин) образуют комплекс с ионами металла Мn+, катализирующими быстрое восстановление О2 до СОР, уничтожающего ДНК в опухоли.

Аллотропная модификация кислорода – озон О3 . В атмосфере озон образуется по фотохимической реакции О2 + О →hν→ О3 , причем атомарный активный кислород образуется также благодаря реакции NO + O2 → NO2 + O . Полезное действие озона в атмосфере заключается в том, что озон не только поглощает биологически активную и тем самым опасную часть ультрафиолетового излучения Солнца, но и принимает участие в формировании теплового режима поверхности нашей планеты. Он задерживает уходящее от Земли тепло в тех спектральных интервалах («окна прозрачности»), где СО2 и Н2 О поглощают это тепло плохо. Озон для человека сильно токсичен. Его предельно допустимая концентрация (ПДК) в воздухе составляет 0,5 мг/м3 . Озон изменяет структуру легких, подавляя их функции, тем самым снижая устойчивость к респираторным заболеваниям. Будучи сильнейшим окислителем (на 2-ом месте после фтора), озон интенсивно окисляет аминокислоты и ферменты, содержащие серу

(цистеин HSCH2 CH(NH2 )COOH, метионин CH3 SCH2 CH2 CH(NH2 )COOH, а также триптофан C8 H6 NCH2 CH(NH2 )COOH, гистидин C3 H3 N2 CH(NH2 )COOH, тирозин HOC6 H4 CH2 CH(NH2 )COOH .

Таким образом, молекулярный кислород О2 не токсичен для живых организмов в отличие от других форм: озона О3 , возбужденной молекулы О2 , радикала ОН, атомарного О, радикала НО2 , СОР О2 - .

4.2. Углерод

Углерод по своему содержанию в организме (21%) и значению для живых организмов – один из важнейших органогенов. Так как данное пособие посвящено именно бионеорганической химии, то мы не будем касаться органических соединений живой природы, что является предметом изучения биоорганической химии. Простейшие соединения углерода, например, свободный углерод в виде сажи и его оксид СО, токсичны для человека. Длительный контакт с сажей или угольной пылью вызывает рак кожи («болезнь трубочистов», как её называли ранее). Мельчайшая пыль угля вызывает изменение структуры легких, а значит, нарушает их функции. Крайне токсичен оксид СО, отравляющее действие которого вызвано тем, что СО связывается с гемоглобином крови в ~10 3 раз легче, чем кислород, и поэтому вызывает удушье.

Углекислый газ СО2 присутствует в биосфере как продукт продуктов дыхания и окисления. Ежегодный выброс СО и СО2 в атмосферу составляет 2 108 и 9 109 тонн

соответственно (для сравнения выброс углеводородов равен 8 107 тонн в год). СО2 мало растворим в воде, поэтому присутствие его в биожидкостях незначительно. Однако, в желудке протекает важная ферментативная реакция СО2 + Cl- + H2 O→ НCO3 - + H+ + Cl- , в результате чего в кислой среде расщепляются белки. Отметим, что без ферментов эта реакция протекает в обратном направлении.

4.3. Водород

Водород присутствует в природе в виде воды и многочисленных органических соединений (табл.1). Вода – главная среда жизнедеятельности организма. В ней растворяется большинство веществ, участвующих в процессах метаболизма. Содержание воды в органах и тканях организма достаточно высоко:

Таблица 3

Ткань, орган, био-

жидкость

Головной мозг

Спинной мозг

Желудочный сок

Плазма крови

Слезная жидкость

Физиологической средой для человека является 0,9%-ный раствор NaCl. Вода обладает высокой удельной теплоемкостью и, вследствие медленного теплообмена с окружающей средой, обеспечивает поддержание постоянной температуры тела. При перегреве происходит испарение воды с поверхности тела. Из-за высокой теплоты парообразования воды этот процесс сопровождается затратами энергии, и температура тела понижается. В водной среде за счет буферных систем (карбонатной, фосфатной и гемоглобиновой) поддерживается кислотно-основной баланс организма.

Как видно из табл.3, среднее значение рН организма отвечает рН физиологического раствора и колеблется от 6,8 до 7,4. Однако, отдельные органы и ткани могут иметь значения рН, сильно отличающиеся от физиологического. Так, в желудке кислотность велика, и рН равен 0,9 – 1,1. Это необходимо для того, чтобы под действием фермента пепсина, активного в кислой среде, шло расщепление пептидов белковой составляющей пищи. Желчь имеет слабощелочную реакцию (рН 7,5 – 8,5), что необходимо для щелочного гидролиза жиров.

4.4. Азот

Азот присутствует в живых организмах в виде разнообразных органических соединений: аминокислот, пептидов, пуриновых оснований и др., а также в виде свободного N2 , поступающего с вдыхаемым воздухом. Круговорот азота в природе тесно свя-

зывает геосферу и биосферу, подтверждая их единство. Существует множество бактерий, способных легко переводить одни соединения азота в другие, причем с изменением степени окисления азота. Так, например, если в технике синтез аммиака осуществляется в жестких условиях, то в биосфере связывание атмосферного N 2 и его превращение в NH3 протекает более легким ферментативным способом с участием нитрогеназы:

N2 + 16ATP + 8e + 8H+ 2NH3 +16ADP +16[Р в неорганических фосфатах] +Н2 , где АТР и АDP – аденозинтрифосфат и аденозиндифосфат соответственно, причем считают, что исходная АТР находится в виде комплекса с Mg. Микроорганизмы, участвующие в этой реакции, присутствуют в корневых клубеньках некоторых растений, а также

в синезеленых водорослях. Фермент нитрогеназа, содержащий белки, а также Мо и Fe, активен только в анаэробных условиях. Исследования показали, что при восстановле-

нии N2 в NH3 не образуются NH=NH и NH2 -NH2 . Это говорит о том, что на ферменте, вероятно, действуют 2 активных центра: на одном расщепляется молекула азота, а на другом координирован атом Н. В природе протекают и другие взаимные превращения

соединений азота: нитрификация или окисление NH3 до NO2 , а также восстановление нитрат-иона из удобрений под действием ферментов растений или анаэробных бакте-

рий до NO2 или даже до NH3 . Неорганические соединения азота, как правило, токсич-

ны, за исключением простого вещества N2 и в небольших количествах N2 O. Ежегодно в атмосферу выбрасывается ~ 5· 107 тонн различных оксидов азота NOx и ~ 107 тонн иных соединений азота. Молекула NO , по современным представлениям, несмотря на кажу-

щуюся трудность её образования из простых веществ, присутствует в атмосфере в огромных количествах. Считают, что до 7 107 тонн атмосферного N2 в год реагируют с О2 в результате высокотемпературных процессов, как то: сжигание топлива в промышленности и работа транспорта. Показано, что оксиды азота, как и озон, способны взаимодействовать с продуктами неполного сгорания топлива с образованием высокоток-

сичных пероксонитратов RСОООNO2 . Под действием солнечной радиации в верхних слоях атмосферы протекают фотохимические реакции с участием NOx , которые катализируются содержащимися там твердыми частицами пыли. В организме человека NO

образуется в количестве ~100 мг в сутки из аргинина по реакции: NH=C(NH2 )- NH(CH2 )3 CH(NH2 )COOH + 3/2O2 →фермент NO-синтетаза → H2 NCONH(CH2 )3 CH(NH2 )COOH +2NO + H2 O. Известно, что молекулы NO способны проникать в клетки стенок кровеносных сосудов и регулировать кровоток; кроме того, NO контролирует секрецию инсулина, почечную фильтрацию, репаративные процессы

в тканях и др. Таким образом, NO – двуликая молекула, проявляющая как токсичное, так и несомненно полезное действие. Например, при приёме такого распространенного кардиологического препарата, как нитроглицерин, происходит гидролиз его с образованием нитрат-иона, который восстанавливается железом гемоглобина до NO, а затем уже именно NO вызывает расслабление гладких мышц сосудов. Другие оксиды азота

NO2 , N2 O3 сильно токсичны и способны вызвать удушье и отек легких. Особенно токсичен нитрит-ион NO2 - , потому что он окисляет метгемоглобин и нарушает процесс переноса О2 в организме. Кроме этого, нитрит-ион образует в желудке канцерогенный нитрозоамин. Однако, NaNO2 применяли раньше как сосудорасширяющее средство при стенокардии и спазмах сосудов головного мозга. В последнее время от NaNO2 из-за его несомненной токсичности отказались, заменив его нитроглицерином или нитросорби-

том, которые не имеют таких побочных эффектов. Вдыхание паров аммиака NH3 в больших количествах вредно, так как аммиак создает сильнощелочную среду на поверхности слизистых оболочек гортани и легких, что вызывает их раздражение и отек.

Кроме того, небольшие молекулы NH3 легко проникают через клеточные мембраны и становятся конкурентами многим лигандам в координации с ионами металлов.

Данный проект осуществляли учащиеся 9-го класса, заинтересовавшиеся ролью неметаллов в жизни человека.

Учебный проект по химии

«Неметаллы в нашей жизни».

Методическое представление:

Введение

Работа над проектом.

Введение

Тема проекта: «Неметаллы в нашей жизни».

Предмет: химия.

Класс: 9-а.

Возраст: 15-16 лет.

Количество учащихся: 4.

Время работы над проектом: около 2 месяцев.

Форма работы: урочно - внеурочная.

Мотивация к работе

Работа над проектом

Презентация проекта

Продукт проекта

Учебный проект по химии

«Неметаллы в нашей жизни».

Методическое представление:

Введение

Методический паспорт учебного проекта

Работа над проектом.

Введение

Метод проектов является одной из составных частей обучения химии. Этот метод наиболее полно отражает два основных принципа коммуникативного подхода к обучению химии: мотивации к учению - в проектной деятельности она всегда положительная - и личный интерес: проект отражает интересы учащихся, их собственный мир. Учащиеся 9-а класса осуществили данный проект в рамках изучения химии.

Методический паспорт учебного проекта

Тема проекта: «Неметаллы в нашей жизни».

Предмет: химия.

Класс: 9-а.

Возраст: 15-16 лет.

Количество учащихся: 4.

Время работы над проектом: около 2 месяцев.

Форма работы: урочно - внеурочная.

Цели образовательные и воспитательные:

Развивать интерес к предмету;

Развивать умение проектировать, работать с информационным текстом, дополнительной литературой, вести поиск нужной информации;

Развивать навыки коммуникативности в ролевом взаимодействии.

Мотивация к работе основывалась на интересе к данной теме.

Тему «Неметаллы» изучали на уроках согласно плану, но только 4 учащихся захотели проработать её более глубоко: Рябинин Андрей, Лазукина Татьяна, Петелина Татьяна, Стрекова Анастасия. Все участники проекта собирали материал, который в виде презентации оформил Рябинин Андрей.

Работа над проектом

1 этап (организационный): выбрав тему своего исследования, учащиеся определили задачи и спланировали свою деятельность. Роль учителя - направляющая на основе мотивации.

2 этап (поисковый и исследовательский): учащиеся собирали информацию по своей теме, готовили наглядное предъявление своих исследований. Роль учителя - наблюдательная, учащиеся в основном работали самостоятельно.

3 этап (предъявление проекта и его продукта). Роль учителя - сотрудничество.

Презентация проекта

Презентация проведена в форме конференции на уроке, где были представлены загадки и тест по неметаллам и сделан вывод о большой роли неметаллов в жизни человека.

Продукт проекта

Участники проекта сделали стенд, на котором представили экспонаты, содержащие те или иные неметаллы, используемые в нашей жизни.

Просмотр содержимого документа
«учебный проект "неметаллы в нашей жизни"»


Неметаллы

Твёрдые

Газообразные

Жидкие

Cl 2

H 2


Неметаллы - это химические элементы, которые могут проявлять свойства как окислителя (принимают электроны), так и восстановителя (отдают электроны).

НеМ – элементы с высокой ОЭО (2 - 4)

Исключения: фтор – только окислитель,

инертные газы – могут только отдавать электроны.

Гелий, неон и аргон – соединений не образуют.


Элементы в неживой природе

Кислород

Кремний

Алюминий

Железо

Кальций

Натрий

Калий

Магний

Водород

Остальные


Нахождение в природе

Самородные элементы

Азот и кислород, инертные газы в составе воздуха

Сера

Графит С

Алмаз С


Нахождение в природе

Апатиты Р

Галит NaCl →

FeS 2 пирит

Кварц

SiO 2


5 B

6 C

14 Si

7 N

1 H

15 P

8 O

9 F

16 S

33 As

2 He

10 Ne

17 Cl

34 Se

35 Br

52 Te

18 Ar

53 I

36 Kr

54 Xe

85 At

86 Rn


Основные неметаллы.

В свободном виде могут быть газообразные неметаллические простые вещества - фтор, хлор, кислород, азот, водород, твёрдые - йод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор. При комнатной температуре в жидком состоянии существует бром.

Мы рассмотрим лишь несколько


это газ зеленого цвета

Применение хлора.

Простое вещество хлор при нормальных условиях - ядовитый газ желтовато-зелёного цвета, с резким запахом. Молекула хлора двухатомная (формула Cl2).

Хлор очень активен - он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений в составе минералов.


Применение

1. В производстве поливинилхлорида, пластикатов, синтетического каучука, из которых изготавливают:

  • изоляцию для проводов, оконный профиль, упаковочные материалы, одежду и обувь, линолеум и грампластинки, лаки, аппаратуру и пенопласты, игрушки, детали приборов, строительные материалы.

2. Отбеливающие свойства хлора известны с давних времен, хотя не сам хлор «отбеливает», а атомарный кислород, который образуется при распаде хлорноватистой кислоты.

3. Производство хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора.

4. Использовался как боевое отравляющее вещество, а также для производства других боевых отравляющих веществ: иприт, фосген.


5. Для обеззараживания воды - « хлорирования ». Наиболее распространённый способ обеззараживания питьевой воды; основан на способности свободного хлора и его соединений угнетать ферментные системы микроорганизмов, катализирующие окислительно-восстановительные процессы.

  • В части долговечности при взаимодействии с хлорированной водой положительные результаты демонстрируют медные водопроводные трубы.

6. В пищевой промышленности зарегистрирован в качестве пищевой добавки E925 .

7. В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений.

8. В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.

9. Как индикатор солнечных нейтрино в хлор-аргонных детекторах.


Оконный профиль, изготовленный

Основным компонентом

отбеливателей является

Лабарракова вода (гипохлорит натрия).


Многие развитые страны стремятся ограничить использование хлора в быту, в том числе потому, что при сжигании хлорсодержащего мусора образуется значительное количество диоксинов.

Биологическая роль хлора.

В организме человека и животных хлор содержится в основном в межклеточных жидкостях (в том числе в крови) и играет важную роль в регуляции осмотических процессов, а также в процессах, связанных с работой нервных клеток.


это светло-желтое хрупкое твердое вещество, в чистом виде без запаха.

Сера существенно отличается от кислорода способностью образовывать устойчивые цепочки и циклы из атомов серы. Это кристаллическая сера - хрупкое вещество жёлтого цвета.




Применение серы.

Серу применяют для производства серной кислоты, вулканизации каучука, как фунгицид в сельском хозяйстве и как сера коллоидная - лекарственный препарат. Также сера в составе серобитумных композиций применяется для получения сероасфальта.

Сера, необходимый

для организма макроэлемент, является

обязательным условием для здоровых кожи,

волос и ногтей, за что ее часто называют

"минералом красоты" .


А еще сера…

  • участвует в формировании хрящевой и костных тканей, улучшает работу суставов и связок;
  • влияет на состояние кожи, волос и ногтей (входит в состав коллагена, кератина и меланина);
  • укрепляет мышечную ткань (особенно в период активного роста у детей и подростков);
  • участвует в образовании некоторых витаминов и усиливает эффективность витамина В1, биотина, витамина В5;
  • оказывает ранозаживляющий и противовоспалительный эффект;
  • уменьшает суставные, мышечные боли и судороги;
  • способствует нейтрализации и вымыванию шлаков и токсинов из организма;
  • стабилизирует уровень сахара в крови;
  • помогает печени выделять желчь;
  • повышает устойчивость к радиоизлучению!

суточная потребность взрослого здорового человека в сере составляет 4-6 г.

Источники серы:

Растительные:

Капуста, лук, спаржа, хрен, крыжовник, виноград, яблоки, чеснок;

Злаки:

Крупы, бобовые, хлебобулочные изделия.

Животные: - постная говядина; - рыба; - куриные яйца; - молоко и молочные изделия.





Газы – неметаллы – двухатомные молекулы




Твёрдое вещество – Неметалл- йод

Спиртовой раствор йода


Бром

При растворении брома в воде

получается бромная вода



Соединения неметаллов .

1) Оксиды – только кислотные

SO 3 , SO 2 , CO 2 и другие.

(кроме NO и CO –безразличные)

2) Гидроксиды – только кислоты

H 2 SO 4 , H 2 SO 3 ,H 2 CO 3 и другие

Образуют летучие соединения с водородом HCl, NH 3


Строение атомов НеМе

1. Элементы расположены в главных подгруппах III –VIII групп (А).

2. На последнем уровне 3 – 7(8) электронов.

3. Радиус атома уменьшается

4. Неметаллические свойства

В периоде – увеличиваются

В группе - уменьшаются


Строение НеМе

5. Высокая электроотрицательность.

6. Принимают электроны и отдают.

7. НеМе → кислотный оксид→кислота

8. Летучие водородные соединения

(кислоты, основания и безразличные)



Аллотропия углерода

Алмаз


Аллотропия углерода


Аллотропия фосфора


Аллотропия серы. Кристаллическая, пластическая и моноклинная


Аллотропия кислорода

Кислород


Заключение

ЗАГАДКИ О НЕМЕТАЛАХ


1.Гость из космоса пришел, в воздухе приют себе нашел.

2.В доме выше всех живем, вдвоем тепло и свет даем.

3.Он безжизненным зовется, но жизнь без него не создается.

4.Красив в кристаллах и парах, на детей наводит страх.

5.Из горы кусочек вынули, в деревянный ствол задвинули.

6.Гордиться уголек невзрачный негорючим братом, и братом прозрачным.

7.Прокаленный уголек дышать пожарнику помог.

8.Белый воздуха боится, покраснел чтоб сохраниться.

9.Хоть многие вещества превращает в яд, в химии она достойна всяческих наград.

10.Какой газ утверждает, что он – это не он?

11.Какие химические элементы утверждают, что могут другие вещества рождать?

12.Какой неметалл является лесом?


Итак, проверим ваши знания по химии:

1.Водород.

2.Водород и гелий.

5.Графит в карандаше.

6.Алмаз, графит.

7.Активированный уголь.

8.Белый и красный фосфор.

11.Водород, кислород.