Основные технологии получения наноматериалов. Методы получения наноматериалов Физические методы получения наночастиц

Введение

1 Возникновение и развитие нанотехнологии

2 Основы технологии наноматериалов

2.1 Общая характеристика

2.2 Технология консолидированных материалов

2.2.1 Порошковые технологии

2.2.3 Контролируемая кристаллизавия из аморфного состояния

2.2.4 Технология пленок и покрытий.

2.3 Технология полимерных, пористых, трубчатых и биологических наноматериалов

2.3.1 Гибридные и супрамолекулярные материалы

2.3.3 Трубчатые материалы

2.3.4 Полимерные материалы

3 Общая характеристика применения наноматериалов

Заключение

В последние несколько лет нанотехнология стала рассматриваться не только как одна из наиболее многообещающих ветвей высокой технологии, но и как системообразующий фактор экономики 21 века – экономики, основанной на знаниях, а не на использовании природных ресурсов или их переработке. Помимо того, что нанотехнология стимулирует развитие новой парадигмы всей производственной деятельности («снизу-вверх» - от отдельных атомов - к изделию, а не «сверху вниз», как традиционные технологии, в которых изделие получают путем отсечения излишнего материала от более массивной заготовки), она сама является источником новых подходов к повышению качества жизни и решению многих социальных проблем в постиндустриальном обществе. По мнению большинства экспертов в области научно-технической политики и инвестирования средств, начавшаяся нанотехнологическая революция охватит все жизненно важные сферы деятельности человека (от освоения космоса - до медицины, от национальной безопасности - до экологии и сельского хозяйства), а ее последствия будут обширнее и глубже, чем компьютерной революции последней трети 20 века. Все это ставит задачи и вопросы не только в научно-технической сфере, но и перед администраторами различного уровня, потенциальными инвесторами, сферой образования, органами государственного управления и т.д.


Нанотехнология сформировалась на основе революционных изменений в компьютерных технологиях. Электроника как целостное направление возникло около 1900 г. и продолжала бурно развиваться в течение всего прошлого столетия. Исключительно важным событием в ее истории стало изобретение транзистора в 1947 г. После этого началась эпоха расцвета полупроводниковой техники, при которой размеры создаваемых кремниевых устройств постоянно уменьшались. Одновременно с этим непрерывно возрастали быстродействие и объем магнитных и оптических запоминающих устройств.

Однако по мере приближения размеров полупроводниковых устройств к 1 микрону в них начинают проявляться квантово-механические свойства вещества, т.е. необычные физические явления (типа туннельного эффекта). Можно с уверенностью предположить, что при сохранении нынешних темпов развития мощности компьютеров вся полупроводниковая технология примерно через 5-10 лет столкнется с проблемами фундаментального характера, так как быстродействие и степень интеграции в ЭВМ достигнут некоторых «принципиальных» границ, определяемых известными нам законами физики. Таким образом, дальнейший прогресс науки и техники требует от исследователей существенного «прорыва» к новым принципам работы и новым технологическим приемам.

Такой прорыв может быть осуществлен только за счет использования нанотехнологий, которые позволят создать целый ряд принципиально новых производственных процессов, материалов и устройств, например нанороботов .

Расчеты показывают, что использование нанотехнологий может повысить основные характеристики полупроводниковых вычислительных и запоминающих устройств на три порядка, т.е. в 1000 раз .

Однако нанотехнологию не стоит сводить только к локальному революционному прорыву в электронике и компьютерных технологиях. Уже сейчас получен ряд исключительно важных результатов, позволяющих надеяться на существенный прогресс в развитии других направлений науки и техники.

На многих объектах в физике, химии и биологии показано, что переход на наноуровень приводит к появлению качественных изменений в физико-химических свойствах отдельных соединений и получаемых на их основе систем. Речь идет о коэффициентах оптического сопротивления, электропроводности, магнитных свойствах, прочности, термостойкости. Более того, согласно наблюдениям новые материалы, получаемые с использованием нанотехнологий, значительно превосходят по своим физическим, механическим, термическим и оптическим свойствам аналоги микрометрического масштаба.

На основе материалов с новыми свойствами уже сейчас создаются новые типы солнечных батарей, преобразователей энергии, экологически безопасных продуктов и многое другое. Уже созданы высокочувствительные биологические датчики (сенсоры) и другие устройства, позволяющие говорить о возникновении новой науки - нанобиотехнологии и имеющие огромные перспективы практического применения. Нанотехнология предлагает новые возможности микрообработки материалов и создания на этой основе новых производственных процессов и новых изделий, что должно оказать революционное воздействие на экономическую и социальную жизнь будущих поколений .


2.1 Общая характеристика

Структура и соответственно свойства наноматериалов формируются на стадии их изготовлёния. Вполне очевидно значение технологии как основы для обеспечения стабильных и оптимальных эксплуатационных характеристик наноматериалов; это важно также с точки зрения их экономичности.

Для технологии наноматериалов в соответствии с многообразием последних характерно сочетание, с одной стороны, металлургических, физических, химических и биологических методов, а с другой стороны, традиционных и принципиально новых приемов. Так, если подавляющее большинство методов получения консолидированных наноматериалов достаточно традиционны, то такие операции, как изготовление, например, «квантовых загонов» с помощью сканирующего туннельного микроскопа, формирование квантовых точек самосборкой атомов или использование ионно-трековой технологии для создания пористых структур в полимерных материалах основаны на принципиально иных технологических приемах.

Весьма разнообразны и методы молекулярной биотехнологии. Все это усложняет изложение основ технологии наноматериалов, учитывая и то, что многие технологические подробности («ноу-хау») авторы описывают только в общих чертах, а зачастую сообщение носит рекламный характер. Далее проанализированы лишь основные и наиболее характерные технологические приемы.


2.2.1 Порошковые технологии

Под порошком понимают совокупность находящихся в соприкосновении индивидуальных твердых тел (или их агрегатов) небольших размеров - от нескольких нанометров до тысячи микрон . Применительно к изготовлению наноматериалов в качестве исходного сырья используют ультрадисперсные порошки, т.е. частицы размером не более 100 им, а также более крупные порошки, полученные в условиях интенсивного измельчения и состоящие из мелких кристаллитов размером, подобным указанным выше.

Последующие операции порошковой технологии - прессование, спекание, горячее прессование и т. п. - призваны обеспечить получение образца (изделия) заданных форм и размеров с соответствующей структурой и свойствами. Совокупность этих операций часто называют, по предложению М.Ю. Бальшина, консолидацией. Применительно к наноматериалам консолидация должна обеспечить, с одной стороны, практически полное уплотнение (т.е. отсутствие в структуре макро- и микропор), а с другой стороны, сохранить наноструктуру, связанную с исходными размерами ультрадисперсного порошка (т. е. размер зерен в спеченных материалах должен быть как можно меньше и во всяком случае менее 100 нм).

Методы получения порошков для изготовления наноматериалов весьма разнообразны; их условно можно разделить на химические и физические, основные, из которых с указанием наиболее характерных ультрадисперсных порошков, приведены в Таблице 1.


Для устранения остаточной пористости необходима термическая обработка спрессованных образцов – спекание. Однако применительно к изготовлению наноматериалов обычные режимы спекания порошковых объектов не позволяют сохранить исходную наноструктуру. Процессы роста зерен (рекристаллизадия) и уплотнения при спекании (усадка), являясь диффузионно-контролируемыми, идут параллельно, накладываясь друг на друга, и совместить высокую скорость уплотнения с предотвращением рекристаллизации нелегко.

Таким образом, использование высокоэнергетических методов консолидации, предполагающих применение высоких статических и динамических давлений и умеренных температур, позволяет в известной степени задержать рост зерен.

Обычные режимы прессования и спекання ультрадисперсных порошков могут использоваться для получения наноструктурных пористых полуфабрикатов, подвергаемых затем для полной консолидации операциям обработки давлением. Так, медные порошки, полученные конденсационным методом, с размером частиц ~35 нм с оксидной (Сu 2 O 3) пленкой толщиной 3,5 нм после прессования при давлении 400 МПа и неизотермического спекания в водороде до 230 ºС (скорость нагрева 0,5 ºС/мин) приобретали относительную плотность 90% с размером зерна 50 нм . Последующая гидростатическая экструзия приводила к получению беспористых макрообразцов, обладающих высокой прочностью и пластичностью (предел текучести при сжатии 605 МПа, относительное удлинение 18 %).

Задержать рост зерен при обычном спекании можно, используя специальные неизотермические режимы нагрева. В этом случае удается за счет конкуренции механизмов усадки и роста зерен оптимизировать процессы уплотнения, исключив в значительной степени рекристаллизационные явления . Электроразрядное спекание, осуществляемое пропусканием тока через спекаемый образец, и горячая обработка давлением порошковых объектов (например, ковка или экструзия) могут также способствовать торможению рекристаллизации и использоваться для получения наноматериалов. Спекание керамических наноматериалов в условиях микроволнового нагрева, приводящего к равномерному распределению температуры по сечению образцов, также способствует сохранению наноструктуры. Однако размер кристаллитов в перечисленных вариантах консолидации обычно на уровне верхнего предела размера зерен наноструктуры, т.е. обычно не ниже 50-100 нм.

2.2.2 Интенсивная пластическая деформация

Формирование нано структуры массивньтх металлических образцов может быть осуществлено методом интенсивной деформации. За счет больших деформаций, достигаемых кручением при квазигидростатическом высоком давлении, равноканальным угловым прессованием и использованием других способов, образуется фрагментированная и разориентированная структура.

На Рисунок 4 показаны две схемы интенсивной пластической деформации – кручение под высоким давлением и равноканальное угловое прессование. В случае схемыa дискообразный образец помещают в матрицу и сжимают вращающимся пуансоном. В физике и технике высоких давлений эта схема развивает известные идеи наковален Бриджмена. Квазигидростатическая деформация при высоких давлениях и деформация сдвигом приводят к формировани неравновесных наноструктур с большеугловыми межзеренными границами. В случае схемы б , принципиальные основы которой были разработаны В. М. Сегалом (Минск), образец деформируется по схеме простого сдвига и существует возможность повторного деформирования с использованием различных маршрутов. В начале 1990-х гг. Р. З. Валиев с соавт. использовали обе схемы для получения наноматериалов, детально исследовав закономерности получения в связи с особенностями структуры и свойств.

1) полная кристаллизация непосредственно в процессе закалки из расплава и образование одно- или многофазной как обычной поликристаллической структуры, так и наноструктуры;

2) кристаллизация в процессе закалки из расплава протекает не полностью и образуется аморфно-кристаллическая структура;

3) закалка из расплава приводит к образованию аморфного состояния, которое трансформируется в наноструктуру только при последующей термической обработке.

Для переработки аморфньих порошков, получаемых, например, газовым распылением жидких расплавов, используют приемы горячей обработки давлением, как это было продемонстрировано японскими исследователями на примере объемных заготовок высокопрочного сплава Al – Y – Ni – Co.

2.2.4 Технология пленок и покрытий

Эти методы весьма универсальны в отношении состава наноматериалов, которые могут быть изготовлены практически в беспористом состоянии в широком диапазоне размеров зерен, начиная от 1-2 нм и более. Единственное ограничение – это толщина пленок и покрытий – от нескольких долей микрона до сотен микрон. Используются как физические методы осаждения, так и химические методы, а так же электроосаждение и некоторые другие приемы. Разделение методов осажаения на физические и химические условно, поскольку, например, многие физические приемы включают химические реакции, а химические методы стимулируются физическими воздействиями.

В Таблица 2 приведены основные методы получения наноструктурных пленок на основе тугоплавких соединений (карбидов, нитридов, боридов) . Возбуждение дугового разряда в азотной или углеродсодержащей атмосфере – один из наиболее распространенных вариантов технологии ионного осаждения; в качестве источника ионов металлов используют металлические катоды. Электродуговое испарение весьма производительно, но сопровождается образованием металлической капельной фазы, освобождение от которой требует специальных конструктивных мер. Этого недостатка лишен магнетронный вариант ионно-плазменного осаждения, в котором мишень (катод) распыляется за счет бомбардировки ионами плазмы газового разряда низкого давления, которая формируется между катодом и анодом. Поперечное постоянное магнитное поле локализует плазму у распыляемой поверхности мишени и повышает эффективность распыления.

Специалисты по генной инженерии разработали методы расщепления и сшивания нитей ДНК «липкими» комплементарными концами, а также приемы «подвешивания» нанопроволочек к «липким концам». Слипание ДНК таким образом может приводить к соединению нанопроволочек. Участки ДНК в таких структурах обычно имеют длину 2-3 витков двойной спирали (примерно 7-10 нм) . Такая алгоритмическая сборка представляется весьма перспективным направлением в создании новых наноматериалов, структура и свойства которых могут программироваться в одном, двух или трех измерениях. Закономерности ДНК-нанотехнологии исследуют весьма интенсивно, поскольку высокая степень «межмолекулярного распознавания» позволяет надеяться на создание путем самосборки разнообразных структур, функциональные свойства которых могут быть предсказаны.

Супрамолекулярный синтез предполагает сборку молекулярных компонентов, направляемую межмолекулярными нековалентными силами. Супрамолекулярная самосборка представляет спонтанное соединение нескольких компонентов (рецепторов и субстратов), в результате чего на основе так называемого «молекулярного распознавания» происходит самопроизвольное образование новых структур (например, изолированных олигомерных сверхмолекул или крупных полимерных агрегатов). Такие органические соединения, как ротаксаны, в которых кольцевая молекула надета на ось с «заглушками», и катенаны, в которых кольцевые молекулы продеты одна в другую, были получены на основе спонтанного нанизывания донорно-акцепторных партнеров, а также за счет вспомогательного образования водородных связей.

На основе металлоорганических строительных блоков путем самосборки могут быть также получены разнообразные неорганические архитектуры (например, цепи сурьмы и теллура, различные каркасы металлов, сплавов и соединений и т.д.). Объекты супрамолекулярной инженерии становятся все более разнообразными.

2.3.2 Нанопористые материалы (молекулярные сита)

Это цеолитные и цеолитоподобные, а также углеродные и полимерные наноструктуры с пространственно-регулярной системой каналов и полостей, которые предназначены как для диффузионного раз деления газовых смесей, так и для размещения и стабилизации наночастиц функционального назначения (подложки для катализа, эмиттеры, датчики и др.). Технологические приемы получения нанопористых материалов весьма разнообразны: гидротермальный синтез, золь-гель-процессы, электрохимические методы, обработка хлором карбидных материалов и др. Различные сотовые структуры создаются комбинацией приемов стандартной литографии (нанесение рисунка будущей решетки), щелочного травления, анодного растворения, окисления-восстановления и т. д.

При обработке полимеров, диэлектриков и полупроводников высокоэнергетическими ионами образуются так называемые ионные треки нанометрового размера, которые могут быть использованы для создания нанофильтров, наношаблонов и т.д. .

Применительно к нанокомпозитным молекулярным ситам цеолитного типа различают, по крайней мере, два метода получения таких матричных структур: кристаллизация пористого материала из геля, где присутствуют наночастицьи будущего композита, и синтез наночастиц i n siti из прекурсоров, предварительно введенных в цеолиты.

2.3.3 Трубчатые материалы

При изучении осадков, образующихся при испарении графита в условиях дугового разряда, было обнаружено, что полосы атомных сеток графита (графенов) могут свертываться в бесшовные трубки. Внутренний диаметр трубок колеблется от долей нанометра до нескольких нанометров, а их длина – в интервале 5-50 мкм.


1 - графитовый анод; 2 - графитовый катод; 3 - токовводы; 4 - изолятор; 5 - держатели; 6 - охлаждаемый реактор; 7 - медный жгут; 8 - электродвигатель; 9 - вакуумметр; 10 - фильтр; 11-13 - вакуумные и газовые подводы

На Рисунок 9 показана схема лабораторной установки для получения углеродных нанотрубок. Графитовый электрод 1 распыляется в гелиевой плазме дугового разряда; продукты распыления в виде трубок, фуллеренов, копоти и т.п. осаждаются на поверхности катода 2 , а также на боковых стенках охлаждаемого реактора. Наибольший выход трубок наблюдается при давлении гелия около 500-600 кПа; параметры дугового режима, геометрические размеры электродов, длительность процесса, размеры реакционного пространства так же оказывают значительное влияние. После синтеза концы трубок обычно закрыты своеобразными «шапочками» (полусферическими или коническими). Важным элементом технологии нанотрубок является их очистка и раскрытие концов, что выполняется различными методами (окисление, обработка кислотами, обработка ультразвуком и т.д.).

Для получения нанотрубок используют также лазерное распыление графита и пиролиз углеводородов с участием катализаторов (металлы группы железа и др.). Последний метод считается одним из самых перспективных в плане повышения производительности и расширения структурного разнообразия трубок.

Заполнение внутренних полостей нанотрубок различными металлами и соединениями может осуществляться либо в процессе синтеза, либо после очистки. В первом случае добавки могут вводиться в графитовый электрод; второй метод более универсален и может реализовываться многими приемами («направленное» заполнение из расплавов, растворов, из газовой фазы и др.).

Вскоре после открытия углеродньтх нанотрубок было обнаружено, что свойством сворачивания обладает не только графит, но и многие другие соединения – нитриды и карбиды бора, халькогениды, оксиды, галогениды и различные тройные соединения. В последнее время были получены и металлические трубки (Аu). Самоформирующиеся трехмерные наноструктуры типа нанотрубок на основе полупроводников и других веществ могут быть получены в результате самосворачивания тонких слоев в трубки-свитки . В данном случае используется различие в остаточных напряжениях, возникающих в эпитаксиальном слое (растягивающие напряжения) и в подложке (сжимающие напряжения).

2.3.4 Полимерные материалы

С помощью нанопечатной литографии удается изготавливать полимерные шаблоны (темплаты) с отверстиями диаметром 10 нм и глубиной 60 нм. Отверстия образуют квадратную решетку с шагом 40 нм и предназначены для размещения нанообъектов типа углеродных нанотрубок, катализаторов и т.д. Такие шаблоны создаются путем деформации специальными штампами с последующим реактивным ионным вытравливанием полимерных остатков из отверстий.

Описаны также приемы литографически индуцированной самосборки наноструктур. В этом случае решетка формируется за счет образующейся матрицы столбов, растущих из полимерного расплава, находящегося на кремниевой поддожке. Отмечается, что этот процесс может быть применен и к другим материалам (полупроводникам, металлам и биоматериалам), что важно для создания запоминающих устройств различных типов .


Различные отрасли промышленности и сферы человеческой деятельности являются потребителями наноматериалов.

В промышленности уже давно эффективно используются полировальные пасты и противоизносные препараты на основе наночастиц. Последние (например, на основе бронзы) вводят в зоны трения машин и различных механизмов, что значительно повышает ресурс их работы и улучшает многие технико-экономические показатели (например, снижается в 3-6 раз содержание СО в выхлопных газах). На поверхности пар трения в процессе эксплуатации формируется противоизносный слой, образующийся при взаимодействии продуктов износа и вводимых в смазку наночастиц. Препараты типа РиМЕТ в промышленном масштабе производятся в России научно-производственным предприятием «Высокодисперсные металлические порошки» (Екатеринбург) .

Добавки частиц и волокон в полимерные матрицы – хорошо известный прием повышения физико-механических свойств полимеров, а также их огнестойкости. Замена многих металлических материалов на полимеры, армированные наночастицами, приводит в автомобилестроении к уменьшению массы автомобиля, снижению потребления бензина и вредных выбросов .

Пористые наноструктуры используются для диффузионного разделения газовых смесей (например, изотопов и других сложных газов, отличающихся молекулярной массой). Размер пор («окон в обычных цеолитах изменяется в интервале 0,4-1,5 нм и зависит от числа атомов кисло рода в циклическях структурах, образующих цеолит. Следует иметь в виду, что поверхность многих пористых наноструктур сама по себе обладает каталитическями свойствами. Высокая селективность в различных процессах разделения возрастает за счет каталитических явлений, что, например, используется при изомеризации органических соединений типа ксилолов.

Значительное внимание уделяется также изучению каталитических, сорбируюших и фильтрующих свойств углеродных нанонтрубок. Отмечены, например, их высокие сорбирующие характеристики применительно к очистке отходящих газов от трудноразрушаемых канцерогенных диоксинов . Заманчивы также перспективы использования фуллеренов и углеродных нанотрубок для водородсорбирующих целей . Кроме этого, в связи с размерными особенностями (большое отношение длины к диаметру и малые размеры), возможностью изменения проводимости в широких пределах и химической устойчивостью углеродные нанотрубки рассматриваются как принципиально новый материал для электронных приборов нового поколения, в том числе и ультраминиатюрных [ , ].

Для наноструктурных объектов характерны необычные оптические свойства, что используется в декоративных целях. Поверхность куполов московского храма Христа Спасителя состоит из титановых пластин, покрытых нитридом титана . В зависимости от отклонений от стехиометрии и наличия примесей углерода и кислорода цвет пленок ТiN x может изменяться от серого до синего, что используют при нанесении покрытий на посуду.

Устройства для записи информации (головки, носители, диски и т.д.) – важная область применения магнитных наноматериалов. Легкость воспроизведения, устойчивость при хранении, высокая плотность записи, невысокая стоимость – вот лишь некоторые из предъявляемых требований к этим системам. Гигантский магниторезестивный эффект, проявляющийся в многослойных магнитно/немагнитных пленках, оказался очень полезным для эффективной записи информации. Этот эффект используется при регистрации очень слабых магнитных полей в считывающих головках дисководов магнитных дисков, что позволило значительно повысить плотность записи информации и увеличить скорость считывания . В течение 10 лет после открытия этого эффекта фирма IВМ довела в 1998 г. выпуск жестких магнитных дисков ЭВМ с головками, основанными на этом явлении, до 34 млрд. долл. (в стоимостном выражении), практически вытеснив старые технологии . Плотность хранения информации ежегодно удваивается.

Задача увеличения продолжительности и качества жизни мотивирует интенсивные разработки в области биоматериалов вообще и нанобиоматериалов в частности . Основные области применения наноматериалов в медидине, биологии и сельском хозяйстве весьма разнообразны:

Хирургический и стоматологический инструментарий;

Диагностика, наномоторы и наносенсоры;

Фармакология, лекарственные препараты и методы их доставки;

Искусственные органы и ткани;

Стимулирующие добавки, удобрения и т.д.;

Защита от биологического и радиологического оружия.


Мир стоит на пороге новой промышленной революции, которая связана, прежде всего, с развитием нанотехнологий. По оценке ведущих экспертов, она сравнима по масштабам своего воздействия на общество с революцией, которая была вызвана изобретением в XX веке транзистора, антибиотиков и информационных технологий, вместе взятых . Сегодня объем мирового рынка нанотехнологической продукции измеряется в миллиардах долларов (пока этот рынок составляют главным образом новые материалы и порошки, улучшающие свойства материалов), а к 2015 году, по прогнозам западных специалистов, он превысит $1 трлн . В недалеком будущем экономическое, военное, социальное и политическое положение развитых стран будет определяться уровнем развития национальной наноиндустрии.

По словам директора Института нанотехнологий (учрежден Международным фондом конверсии) Михаила Ананяна , нанотехнологии не будут развиваться также эволюционно, как, например, электроника: сначала радиоприемник, потом телевизор, потом компьютер. Сейчас активно идет моделирование различных наноприборов, приспособлений и т. д. И как только будет создана технология, произойдет резкий скачок – просто появится новая цивилизация, резко снизится материало- и энергоемкость, возникнет гораздо более эффективная экономика.

Но не все так просто, ведь, как я уже упоминала, реализация нанотехнической революции требует усилий не только и не столько со стороны ученых (разработки идут полным ходом), требуется усилия со стороны государственной власти – ни один другой инвестор не потянет такой «крупномасштабный проект». Следует на законодательном уровне принципиально изменить сам подход к формированию национальной программы развития нанотехнологий. Тем более, что наша страна располагает немалым опытом реализации крупномасштабных проектов.

Вспомним, что в нашей истории были три проекта, которые повлекли за собой качественные изменения практически во всех отраслях промышленности. Я имею в виду ГОЭЛРО, атомный проект, освоение космоса. Развитие нанотехнологий относится к проектам именно такого, общегосударственного уровня, поскольку их применение повлечет за собой качественные изменения во всех, без исключения, отраслях экономики. В декабре Правительство приняло решение о формировании национальной программы развития нанотехнологий, недавно Президент России в своем ежегодном послании Федеральному Собранию обозначил, что Россия должна стать лидером в области нанотехнологий. Остается только надеяться, что это начинание (лучше поздно, чем никогда, - Россия остается единственной страной, называющей себя развитой, которая не имеет своей программы в этой области) выльется в реальный, дествующий проект и не превратится в очередную кампанейщину.


1. Нанотехнология для всех/ Рыбалкина М. – М., 2005. – 434 с.

2. Введение в нанотехнологию/ Кобаяси Н. – Пер. с японского – М.: БИНОМ. Лаборатория знаний, 2007. – 134 с.:ил.

3. Введение в нанотехнологию/ Меньшутина Н.В. – Калуга: Издательство научной литературы Бочкаревой Н.Ф., 2006. – 132 с.

4. Порошковое материаловедение/ Андриевский Р.А. – М.: Металлургия, 1991. – 205 с.

5. Левитационный метод получения ультрадисперсных порошков металлов /Ген М.Я., Миллер А.В. Поверхность. Физика, химия, механика. – 1983. №2., С. 150-154.

6. Троицкий В.Н Получение ультрадисперсных порошков в плазме СВЧ-разрядв// СВЧ-генераторы плазмы: физика, техника, применение/ Батенин В.М. и др. – М.: Энергоатомиздат, 1988. – С. 175-221.

7. Applications of ultrasound to materials chemistry/ Suslick K.S., Price G.J. Annual Review Materials Science. – 1999. V.2., P. 295-326.

8. Нанопорошки, получаемые с использованием импульсных методов нагрева мишеней/ Котов Ю.А. Перспективные материалы. – 2003. №4., С. 79-81.

9. Ультразвуковое прессование керамических ультрадисперсных порошков/ Хасанов О.Л. Известия вузов. Физика. – 2000. №5., С. 121-127.

10. Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour/ Champion Y., Guerin-Mailly S., Bonnentien J.-L. Scripta Materialia. – 2001. V.44. N8/9., P. 1609-1613.

11. Фiзико-хiмiчна кiнетика в наноструктурних системах/ Скороход В.В., Уварова И.В., Рагуля А.В. – Киiв: Академперодiика, 2001. – 180 с.

12. Наноструктурные материалы, полученные интенсивной пластической деформацией/ Валиев Р.З., Александров И.В. – М.: Логос, 2000. – 272 с.

13. Gleser A.M. Melt quenched nanocristals// Nanostructured Materials: Science and Technology/ Eds G.-M. , Noskova N.I. – Dordrecht: Kluwer Academic Publishers, 1998. – P. 163-182.

14. Nanocrystalline aluminium bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorbhous powders/ Kawamura Y., Mano H., Inoue A. Scripta Materialia. – 2001. V.44. N8/9., P. 1599-1604.

15. Синтез и свойства пленок фаз внедрения/ Андриевский Р.А. Успехи химии. – 1977. Т.66. №1., С. 57-77.

16. Microstrukture development of Al2O3 – 13wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders/ Goberman D., Sohn Y.H., et fa. Acta Materialia. – 2002. V. 50., P. 1141-1151.

17. Наночастицы металлов в полимерах/ Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. – М.: Химия, 2000. – 672 с.

18. DNA nanotechnology/ Seeman N. Materials Today. – 2003. N1., P. 24-29.

19. Ионно-трековая нанотехнология/ Реутов В.Ф., Дмитриев С.Н. Российский химический журнал. – 2002. Т.46. №5., С. 74-80.

20. A new family of mesoporous molecular sieves prepared with liquid crystal templates/ Beck J.S. et al. Journal of American Chemical Society. – 1992. V.114. N27., P. 1609-1613.

21. Трехмерные самоформирующиеся наноструктуры на основе свободных напряженных гетеропленок/ Принц В.Я. Известия вузов. Физика. – 2003. Т.46. №4., С. 35-43.

22. Нанотехнология в ближайшем десятилетии: Прогноз направления исследований/ Под ред. Рокко М.К., Уильямса Р.С., Аливисатора П./ Пер. с англ. под ред. Андриевского Р.А. – М.: Мир, 2002. – 292 с.

23. Новые защитные покрытия/ Лисовских В.Г. Помазкин А.М. - http://www.coldzinc.ru/topic/3.shtml

24. Химия и применение углеродных нанотрубок/ Раков Э.Г. Успехи химии. – 2001. Т.70. №10., С. 934-973.

25. Hydrogen Storage/ Materials Research Society Bulletin. – 2002. V.27. N9., P. 675-716.

26. Нанохимия – прямой путь к высоким технологиям/ Бучаченко А.Л. Успехи химии. – 2003. Т.72. №5., С. 419-437.

27. Углеродные нанотрубки и их эмиссионные свойства/ Елецкий А.В. Успехи физических наук. – 2002. Т.172. №4., С. 401-438.

28. Строительство храмов. Из истории Храма Христа Спасителя. - http://www.morion.biz/art.php?rids=8&ids=1

29. Молекулярная электроника на пороге нового тысячелетия/ Минкин В.И. Российский химический журнал. – 2000. Т.44. №6., С. 3-13.

30. Дорога в будущее/ Билл Гейтс –

http://lib.web-malina.com/getbook.php?bid=1477

31. Use of high surface nanofibrous materials in medicine/ Mikhalovsky S.V. – Dordrecht: Kluwer Academic Publishers, 2004. – P. 330.

32. От нанотехнологий – к инновационной промышленности/ Мазуренко С. Технополис XXI. – 2005. №5 (http://www.technopolis21.ru/76)

33. Бойцы невидимого фронта/


Нанотехнология для всех/ Рыбалкина М. – М., 2005. – 434 с.

Введение в нанотехнологию/ Кобаяси Н. – Пер. с японского – М.: БИНОМ. Лаборатория знаний, 2007. – 134 с.:ил.

Ультразвуковое прессование керамических ультрадисперсных порошков/ Хасанов О.Л. Известия вузов. Физика. – 2000. №5., С. 121-127.

Fabrication of bulk nanostructured materials from metallic nanopowders: structure and mechanical behaviour/ Champion Y., Guerin-Mailly S., Bonnentien J.-L. Scripta Materialia. – 2001. V.44. N8/9., P. 1609-1613.

Фiзико-хiмiчна кiнетика в наноструктурних системах/ Скороход В.В., Уварова И.В., Рагуля А.В. – Киiв: Академперодiика, 2001. – 180 с.

Наноструктурные материалы, полученные интенсивной пластической деформацией/ Валиев Р.З., Александров И.В. – М.: Логос, 2000. – 272 с.

Gleser A.M. Melt quenched nanocristals// Nanostructured Materials: Science and Technology/ Eds G.-M. , Noskova N.I. – Dordrecht: Kluwer Academic Publishers, 1998. – P. 163-182.

Nanocrystalline aluminium bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorbhous powders/ Kawamura Y., Mano H., Inoue A. Scripta Materialia. – 2001. V.44. N8/9., P. 1599-1604.

Синтез и свойства пленок фаз внедрения/ Андриевский Р.А. Успехи химии. – 1977. Т.66. №1., С. 57-77.

Microstrukture development of Al2O3 – 13wt % TiO2 plasma sprayed coatings derived from nanocrystalline powders/ Goberman D., Sohn Y.H., et fa. Acta Materialia. – 2002. V. 50., P. 1141-1151.

Наночастицы металлов в полимерах/ Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. – М.: Химия, 2000. – 672 с.

DNA nanotechnology/ Seeman N. Materials Today. – 2003. N1., P. 24-29.

Ионно-трековая нанотехнология/ Реутов В.Ф., Дмитриев С.Н. Российский химический журнал. – 2002. Т.46. №5., С. 74-80.

A new family of mesoporous molecular sieves prepared with liquid crystal templates/ Beck J.S. et al. Journal of American Chemical Society. – 1992. V.114. N27., P. 1609-1613.

Трехмерные самоформирующиеся наноструктуры на основе свободных напряженных гетеропленок/ Принц В.Я. Известия вузов. Физика. – 2003. Т.46. №4., С. 35-43.

Нанотехнология в ближайшем десятилетии: Прогноз направления исследований/ Под ред. Рокко М.К., Уильямса Р.С., Аливисатора П./ Пер. с англ. под ред. Андриевского Р.А. – М.: Мир, 2002. – 292 с.

Новые защитные покрытия/ Лисовских В.Г. Помазкин А.М. - http://www.coldzinc.ru/topic/3.shtml

От нанотехнологий – к инновационной промышленности/ Мазуренко С. Технополис XXI. – 2005. №5 (http://www.technopolis21.ru/76)

Бойцы невидимого фронта/

http://www.businesspress.ru/newspaper/article_mId_37_aId_130917.html

Изобретение относится к способу получения наноматериалов. Способ включает воздействие электрического разряда на электрод в водной электропроводящей среде. При этом в водную электропроводящую среду с удельной электропроводностью 0,3-0,7 См/см погружают не менее двух электродов, изготовленных из разных материалов. Химический состав одного из электродов, меньшего по площади соприкосновения с электропроводящей средой, соответствует требуемому составу получаемого наноматериала. Для получения наноматериала на упомянутый электрод воздействуют электрическим разрядом с удельной мощностью 0,1-0,9 кВА/см 2 , при комнатной температуре и атмосферном давлении с формированием стационарного плазменного разряда для образования наноматериала. Техническим результатом является простота, доступность способа, недорогое оборудование. 3 ил., 2 пр.

Область техники

Изобретение относится к области получения наноматериалов из электропроводящих материалов, которые могут использоваться в энергетике, металлургии, производстве легированных порошковых сталей, в химических и биомедицинских производствах, для изготовления деталей, обладающих электропроводящими свойствами.

Предшествующий уровень техники

Известен способ с использованием концентрированных потоков энергии, например, электродуговой эрозией графитового стержня сечением 30…160 мм 2 при плотности тока 80-200 А/см 2 и И=20-28В в гелиевой атмосфере при Р=40-100 тор (патент на изобретение РФ №2196731, 2000 г.).

Известен способ лазерной абляции металлической мишени (Козлов Г.И. «Письма в ИСТФ», 2003, т.29, вып.18, с.88-94). Под воздействием лазерного облучения происходит испарение атомов и кластеров с поверхности и последующая конденсация их в наночастицы.

Известные способы предполагают создание высоких температур, низкого давления, применение сложных, энергетически затратных установок.

Известен также способ воздействия на жидкость соноплазменным разрядом, инициированным ультразвуковым полем, характеризующийся объемным свечением во всем пространстве между электродами, погруженными в жидкую многофазную среду. Синтез наноматериалов в известном способе реализуется за счет разложения такой многофазной среды (Абрамов В.О. и др. «Физико-химические процессы в соноплазменном разряде», Материаловедение, №7, 2010 г.). Установка для соноплазменной технологии синтеза наноматериалов на основе известного способа (Лаборатория ультразвуковой техники ИОНХ РАН) работает в диапазоне частот 21,0-26,0 кГц при напряжении горения соноплазменного разряда 30-400В.

Известен наиболее близкий, взятый за прототип, способ получения наноматериалов, включающий воздействие электрического разряда на электрод в водной электропроводящей среде, характеризующийся применением импульсных электрических разрядов в водных растворах для получения наноматериалов и использованием их для очистки воды (Даниленко Н.Б. и др. «Применение импульсивных электрических разрядов в водных растворах для получения наноматериалов и их использование для очистки воды», журнал Нанотехника №4(8), с.81-91).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известных способов, относится то, что в известных способах является необходимостью использования в установке высоковольтного импульсного трансформатора, ультразвукового генератора с излучателем, а также получение многофазной жидкой среды, что усложняет технологический процесс, делает его энергозатратным и дорогостоящим.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является разработка недорогого в применении, с минимальными затратами материалов и энергоресурсов, способа получения наноматериалов.

Техническим результатом изобретения является формирование стационарного разряда при комнатной температуре и атмосферном давлении, что упрощает процесс получения наноматериалов без применения дорогостоящих оборудования и материалов.

Технический результат достигается тем, что способ получения наноматериалов, включающий воздействие электрического разряда на электрод в водной электропроводящей среде, согласно изобретению в водную электропроводящую среду с удельной электропроводностью 0,3-0,7 См/см погружают не менее двух электродов, изготовленных из разных материалов, при этом химический состав одного из них, меньшего по площади соприкосновения с электропроводящей средой, соответствует требуемому составу получаемого наноматериала, и воздействуют на упомянутый электрод электрическим разрядом с удельной мощностью 0,1-0,9 кВА/см 2 при комнатной температуре и атмосферном давлении с формированием стационарного плазменного разряда для образования частиц наноматериала.

Между совокупностью признаков и указанным выше техническим результатом существует следующая причинно-следственная связь.

Получение наноструктур в водной электропроводящей среде при комнатной температуре и атмосферном давлении из материала электрода, химический состав которого соответствует требуемому составу получаемого наноматериала, исключает возможность применения дорогостоящего энергозатратного оборудования и многофазной жидкой среды.

Для осуществления заявляемого способа необходимы недорогое оборудование, состоящее из источника питания постоянного тока N>1,0 кВА, емкости с электропроводящей средой - электролитом, электродов с узлом их крепления, при этом меньший по площади соприкосновения с электролитом электрод изготавливается из электропроводящего материала, химический состав которого соответствует составу получаемых наночастиц. Так, для получения нанографита используется спектрально чистый графит, для получения серебра - серебряный электрод, получения порошка ВК-8 (вольфрам-кобальтовый) - пластина из соответствующего сплава и т.д. Электрод, предназначенный для получения наночастиц, может быть любой формы - плоской, цилиндрической, дискообразной и т.д. Одновременное погружение нескольких электродов, предназначенных для получения наночастиц, увеличивает производительность установки. Способ не требует создания высоких температур, низкого давления. Получение наноматериалов происходит при комнатной температуре (18-22°C) и атмосферном давлении.

Электропроводящая среда (электролит) может быть создана на основе кислоты, щелочи или соли.

Краткое описание чертежей

На фиг.1 приведена схема установки для осуществления способа получения наноматериалов. На фиг.2 приведен фотоснимок стационарного плазменного разряда. На фиг.3 - фотоснимок полученного наноматериала.

Осуществление изобретения

Способ получения наноматериалов осуществляется следующим образом. Электрод 1, химический состав которого соответствует требуемому составу получаемого наноматериала, подключают к отрицательному полюсу источника питания (не показан), второй, больший по размерам электрод 2 подключают к положительному полюсу источника питания. Электрод 2 изготавливают из инертного материала. Оба электрода 1 и 2 погружают в электропроводящую среду с удельной электропроводностью 0,3 См/см (электролит) 3. Электроды погружают в электролит, при этом площадь соприкосновения электрода 1 с электролитом в несколько раз меньше площади соприкосновения электрода 2 с данным электролитом. Расстояние между погруженными электродами выбирают не менее 10 мм. При подаче на установку напряжения 100-300 В, за счет приэлектродного падения потенциала, на электроде 1 формируются микроплазменные разряды (Фиг.2), воздействие которых вызывает вырыв (выплавление, испарение) частиц металла. При работе установки средняя энергия электронов в столбе разряда составляет 3-5 эВ, температура газа варьируется от 300 К до 1700 К, в зависимости от удельной мощности разряда. Наночастицы в чистом виде из электролита поучают центрифугированием, либо выпариванием.

Применение в установке растворов с удельной электропроводностью менее 0,3 См/см требуют увеличения подводимой мощности из-за потерь на сопротивление электролита. Применение растворов с электропроводностью более 0,7 См/см - технически и экономически нецелесообразно.

Подведение к установке удельной мощности менее 0,1 кВА/см 2 недостаточно для формирования стабильного разряда, а превышение такой мощности свыше 0,9 кВА/см 2 приводит к расплавлению электрода, поэтому удельную мощность в описанной установке применяют в пределах 0,1-0,9 кВА/см 2 .

Примеры выполнения:

Заявляемое изобретение поясняется примерами конкретного выполнения.

Два спектрально чистых графитовых электрода диаметром 6 мм погружают в электролитическую ванну, заполненную раствором HCl удельной электропроводностью 0,55 См/см на глубину 5,0 и 50,0 мм соответственно. При подаче напряжения U=100B и токе I=1,8A, что составляет 0,18 кВА/см 2 удельной мощности разряда на электроде, предназначенном для получения наночастиц, формируется стационарный плазменный разряд, воздействие которого на электрод приводит к образованию наночастиц графита размерами менее 100 нм.

Первый электрод в виде пластины площадью 1 см 2 из сплава ВК-8, второй электрод в виде свинцового кольца диаметром 60 мм погружают в электролитическую ванну, заполненную раствором NaOH с удельной электропроводностью 0,3 См/см. При U=190B и токе I=3 A, Nуд=0,57 кВА/см 2 , размеры полученного вольфрамо-кобальтового порошка составляют 3-5 нм.

На Фиг.2 приведен снимок, полученный на электронном микроскопе ЭВМ-100Л. Размер полученных наночастиц составляет 3-5 нм.

Способ получения наноматериалов, включающий воздействие электрического разряда на электрод в водной электропроводящей среде, отличающийся тем, что в водную электропроводящую среду с удельной электропроводностью 0,3-0,7 См/см погружают не менее двух электродов, изготовленных из разных материалов, при этом химический состав одного из них, меньшего по площади соприкосновения с электропроводящей средой, соответствует требуемому составу получаемого наноматериала, и воздействуют на упомянутый электрод электрическим разрядом с удельной мощностью 0,1-0,9 кВА/см 2 , при комнатной температуре и атмосферном давлении с формированием стационарного плазменного разряда для образования наноматериала.

Похожие патенты:

Изобретение относится к электролитическому рафинированию металлов, образующих значительное количество анодного шлама, и может быть использовано для моделирования процесса электролитического рафинирования металлов в промышленных условиях.

Изобретение относится к области металлургии, более конкретно к металлургии тяжелых цветных металлов и, в частности к способам изготовления конструктивных элементов диафрагменных ячеек, используемых в процессе электролитического извлечения металлов из водных растворов, например, никеля, кобальта и других металлов.

Изобретение относится к области электрохимии и может быть использовано в качестве подготовительного этапа производства электрокатализаторов. Описан способ предварительной обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку углеродного носителя электрохимического катализатора производят в вакуумной камере, снабженной источником потока атомных частиц и держателем углеродного порошка, выполненным с возможностью перемешивания порошка, порошок углеродного носителя перемешивают, а поверхность носителя бомбардируют пучком атомных частиц, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством автономной подачи газа, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают инертный газ с образованием над подложкой псевдокипящего слоя частиц углеродного носителя, а бомбардировку поверхности частиц углеродного носителя производят с энергией ионов не менее 7,41 эВ/атом.

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования.

Изобретение относится к новому способу получения фуллеренола С84, при котором сухой углеродный шлам (отходы производства сульфоаддукта нанокластеров углерода) загружают в экстрактор типа аппарата Сокслета и экстрагируют фуллеренол в виде водного раствора аммиачной соли фуллеренола раствором аммиака, нагревом его в испарительной части экстрактора.

Изобретение относится к области создания средств инициирования и может быть использовано при изготовлении безопасных как в снаряжении, так и обращении электродетонаторов (ЭД) без инициирующих взрывчатых веществ (ВВ).

Изобретение относится к способу модификации поверхности неорганического оксида. Способ включает обработку неорганического оксида водорастворимой солью никеля (II) с последующим образованием наночастиц оксида никеля (II) на поверхности неорганического оксида.

Изобретение относится к области металлургии, а именно к термомеханической обработке монокристаллов ферромагнитных сплавов Со35Ni35Аl30. Для повышения механических и функциональных свойств, создания материала с двойным эффектом памяти формы и высокотемпературной сверхэластичностью в способе получения нанокомпозита с двойным эффектом памяти формы на основе монокристалла ферромагнитного сплава Со35Ni35Аl30 первичный отжиг монокристалла проводят при температуре 1330-1340°С в течение 8,5 часов в атмосфере инертного газа.

Изобретение относится к области материаловедения. Способ получения полимерного композита антифрикционного назначения на основе политетрафторэтилена включает предварительную физико-химическую обработку порошка ультрадисперсного детонационного алмаза, механическое диспергирование смеси порошков политетрафторэтилена и ультрадисперсного детонационного алмаза, прессование и термическое спекание композита в инертной среде.

Изобретение относится к химической промышленности. Фуллеренсодержащую сажу смешивают с жидкостью, взаимодействующей с находящимися в саже фуллеренами, например, с водным раствором щелочи концентрацией не менее 0,5 мас.%, из ряда, включающего КОН, NaOH, Ва(ОН)2 и/или с перекисью водорода Н2О2, при соотношении к саже 1:(20-300) мл/г.

Изобретение относится к различным областям техники, использующим материалы с развитыми поверхностями в виде многослойных наноструктур для производства солнечных батарей, фотоприемных устройств, катализаторов, высокоэффективных люминесцентных источников света. В способе создания многослойной наноструктуры на одну из поверхностей прозрачного для лазерного излучения материала наносят дифракционную решетку и воздействуют на этот материал импульсом лазерного излучения, вызывают дифракцию и многолучевую интерференцию лазерного луча у поверхности дифракционной решетки в области лазерного пятна, образуют в этой области множество отраженных от дифракционной решетки лазерных лучей, вызывают последовательно в точках их отражения от дифракционной решетки локальное выделение энергии лазерного луча, плавление прозрачного для лазерного излучения материала, образование центров кристаллизации, взрывную кристаллизацию прозрачного для лазерного излучения материала по отраженным от дифракционной решетки лучам после завершения действия импульса лазерного излучения и одновременно создают множество срощенных между собой слоев из прозрачного для лазерного излучения материала. Изобретение позволяет создавать многослойные наноструктуры из многих сотен слоев за время длительности одного импульса лазерного излучения. 4 з.п. ф-лы, 2 ил.

Изобретение относится к способу получения наноматериалов. Способ включает воздействие электрического разряда на электрод в водной электропроводящей среде. При этом в водную электропроводящую среду с удельной электропроводностью 0,3-0,7 Смсм погружают не менее двух электродов, изготовленных из разных материалов. Химический состав одного из электродов, меньшего по площади соприкосновения с электропроводящей средой, соответствует требуемому составу получаемого наноматериала. Для получения наноматериала на упомянутый электрод воздействуют электрическим разрядом с удельной мощностью 0,1-0,9 кВАсм2, при комнатной температуре и атмосферном давлении с формированием стационарного плазменного разряда для образования наноматериала. Техническим результатом является простота, доступность способа, недорогое оборудование. 3 ил., 2 пр.

Курс разработан АНО «еНано» совместно с НИТУ «МИСиС» и ориентирован на студентов, обучающихся по направлениям подготовки «Материаловедение и технологии материалов» и «Наноматериалы».

Компания еНано входит в группу РОСНАНО, занимается разработкой курсов и программ, а также обучением в дистанционном формате инженерно-технических и управленческих кадров высокотехнологичной отрасли.

О курсе

Курс дает знания и практические навыки в области физико-химических основ процессов получения наночастиц и наноматериалов, помогает понять взаимосвязь условий их формирования и свойств, знакомит с основами аттестации наночастиц и наноматериалов, проблемами и перспективами их практического применения.

На основе знаний о явлениях, протекающих в гомогенных и гетерогенных системах при изменении температуры и давления, а также внешних механических воздействиях, у студента формируются представления о физико-химических основах процессов получения наночастиц и наноматериалов. В курсе рассказывается о "биографическом" наследовании наноматериалами свойств в зависимости от условий их получения. В результате освоения курса студент получит навыки выполнения расчетов по определению избыточной свободной энергии веществ, связанной с возрастанием их поверхности и дефектности структуры.

Формат

Обучение проходит в дистанционном формате. Еженедельные занятия включают в себя:
просмотр тематических видео-лекций;
изучение иллюстрированных текстовых материалов, включающих 2-3 вопроса на самопроверку для усвоения теоретического материала;
выполнение оцениваемых проверочных заданий после каждого раздела для контроля усвоения материала. Задания идут в зачет для получения сертификата.
Важным элементом обучения на курсе является выполнение 2-х индивидуальных заданий в форме эссе для обсуждений на форуме курса. А также предусмотрено итоговое контрольное тестирование по всему содержанию курса.

Информационные ресурсы

Рыжонков Д.И. и др. Наноматериалы. Учебное пособие. М.БИНОМ.Лаборотория знаний. 2008г., 280с. с ил.
Фахльман Б.Химия новых материалов и нанотехнологии. Учебное пособие. М. ИД Интеллект.2011г., 317с. с ил.
Масуо Хосокава, Кийоши Ноги, МакиоНаито. Справочник по технологии наночастиц. М. Научный мир. 2013г., 769с. с ил.

Требования

Для успешного освоения материалов курса обучающимися предварительно должны быть освоены:
"Химия",
"Фазовые равновесия и структурообразования",
"Физическая химия",
"Физические свойства твердых тел",
"Процессы получения и обработки материалов",
"Диффузия и диффузионно-контролируемые процессы",
"Механические свойства материалов",
"Теория гомогенных и гетерогенных процессов".

Для освоения данного курса обучающиеся
Должны знать: фундаментальные разделы неорганической, органической и физической химии, их законы и методы, свойства химических элементов, соединений и материалов на их основе, закономерности структурообразования и фазовых превращений, влияния структурных характеристик на свойства материалов, основные классы современных материалов.
Должны уметь: проводить расчеты основных физико-химических характеристик реакционных систем для определения возможности и интенсивности протекания в них различных превращений.
Должны владеть навыком: расчета технологических процессов, использования методов структурного анализа и определения физических и физико-механических свойств материалов, техники проведения экспериментов и их статистической обработки.

Программа курса

Часть 1. Классификация процессов получения наночастиц. Физико-химические основы способов получения наноразмерных порошков(НП). Аттестация НП.

  1. Газофазный способ получения наноразмерных порошков (НП). Основные закономерности образования НП методом испарения и конденсации.
  2. Конденсационный рост наночастиц (НЧ). Коагуляция и коалесценция НЧ.
  3. Плазменный переконденсационный метод получения НП.
  4. Плазмохимический способ получения НП.
  5. Процессы получения наночастиц (НЧ) осаждением НП из растворов.
  6. Получение НП термическим разложением и восстановлением металлсодержащих соединений.
  7. Механический способ получения НП. Механосинтез.
  8. Электровзрывной способ получения НП. Сравнительные свойства НП, полученных разными способами. Биографическое наследование ими свойств в зависимости от способа получения.
  9. Аттестация наночастиц. Исследование состава, свойств, дисперсности.

Часть 2. Фуллерены, углеродные и неуглеродные нанотрубки.

  1. История открытия фуллеренов. Механизмы формирования фуллероновой структуры. Модифицированные производные фуллеренов.
  2. Способы получения углеродных нанотрубок (С-НТ) (дуговой, лазерно-термический, пиролитический). Механизмы роста С-НТ.

Часть 3. Физико-химические основы получения объёмных наноматериалов (НМ).

  1. Классификация способов получения объёмных НМ. Наноразмерные пленки и покрытия, осаждаемые на подложке. Химическое осаждение наноструктурных покрытий из газовой фазы (CVD).
  2. Физическое осаждение наноструктурных покрытий из газовой фазы (PVD).
  3. Порошковая металлургия объёмных НМ. Формование НП.
  4. Спекание НП для получения объёмных НМ.
  5. Интенсивная пластическая деформация, как способ получения объёмных НМ. Способ получения объёмных НМ контролируемой кристаллизацией из аморфного состояния.

Результаты обучения

В результате освоения курса «Процессы получения наночастиц и наноматериалов» студент способен:
использовать термодинамический и кинетический анализы реакционных систем для обоснования наиболее вероятного механизма процессов получения наночастиц и наноматериалов;
анализировать возможность разных методов получения наноматериалов для формирования у них заданных свойств и состава;
проводить анализ дисперсности наноматериалов, полученных различными способами;
самостоятельно работать с литературой для поиска информации об отдельных определениях, понятиях и терминах в области наночастиц, включая процессы их получения;
проводить расчеты основных показателей процессов получения наночастиц и наноматериалов (равновесный состав и выход целевого продукта);
подготавливать и проводить процессы получения наночастиц и наноматериалов.

Формируемые компетенции

(28.03.03 Наноматериалы ПК3)
Способность применять основные типы наноматериалов и наносистем неорганической и органической природы для решения производственных задач; владеть навыками выбора этих материалов для заданных условий эксплуатации;
(28.03.03 Наноматериалы ПК2)
Уметь использовать на практике современные представления наук о свойствах веществ и материалов при переходе их в наноразмерное состояние (ноль-, одно-, двух- и трехмерное), о влиянии размера на свойства веществ и материалов, взаимодействия наноматериалов и наносистем с окружающей средой;
(22.03.01 Материаловедение и технологии материалов ПК 1)
Способность проводить под руководством научно-исследовательские работы и (или) опытно-конструкторские разработки в области материаловедения и технологии материалов;
(22.03.01 Материаловедение и технологии материалов ПК 3)
Готовность участвовать в разработке технологических процессов на стадии разработки, внедрения в производство и испытаний материалов и изделий из них.

К настоящему времени разработаны многочисленные методы получения наноматериалов как в виде нанопорошков, так и в виде включений в пористые или монолитные матрицы. При этом в качестве нанофазы могут выступать ферро- и ферримагнетики, металлы, полупроводники, диэлектрики и др.

Согласно Фендлеру, важнейшими условиями получения наноматериалов являются:

1. Неравновесность систем. Практически все наносистемы термодинамически неустойчивы, и их получают в условиях, далеких от равновесных, что позволяет добиться спонтанного зародышеобразования и избежать роста и агрегации сформировавшихся наночастиц.

2. Однородность наночастиц. Высокая химическая однородность наноматериала обеспечивается, если в процессе синтеза не происходит разделения компонентов как в пределах одной наночастицы, так и между частицами.

3. Монодисперсность наночастиц. Свойства наночастиц чрезвычайно сильно зависят от их размера, поэтому для получения материалов с хорошими функциональными характеристиками необходимо использовать частицы с достаточно узким распределением по размерам.

В дальнейшем было показано, что эти условия не всегда обязательны для выполнения. Например, растворы поверхностно-активных веществ (мицеллярные структуры, пленки Ленгмюра - Блоджетт, жидкокристаллические фазы) являются термодинамически стабильными, тем не менее они служат основой для формирования разнообразных наноструктур.

Все методы получения наноматериалов можно условно разделить на несколько больших групп. К первой группе относят так называемые высокоэнергетические методы, основанные на быстрой конденсации паров в условиях, исключающих агрегацию и рост образующихся частиц. Основные различия между отдельными методами этой группы состоят в способе испарения и стабилизации образующихся наночастиц. Испарение можно проводить с использованием плазменного возбуждения (plasma-ark), лазерного излучения (laser ablation), вольтовой дуги (carbon ark) или термического воздействия. Конденсацию осуществляют либо в присутствии ПАВ, адсорбция которого на поверхности частиц замедляет рост (vapor trapping); либо на холодной подложке, когда рост частиц ограничен скоростью диффузии; либо в присутствии инертного компонента, что позволяет направленно получать нано композитные материалы с различной микроструктурой . Если компоненты взаимно нерастворимы, то размер наночастиц можно варьировать с помощью термической обработки.

Ко второй группе относятся механохимические методы (ball-milling), позволяющие получать нанокомпозиты при совместном помоле взаимо нерастворимых компонентов в планетарных мельницах или при распаде твердых растворов с образованием новых фаз под действием механических напряжений.

Третья группа методов основана на использовании пространственно-ограниченных систем -- нанореакторов (мицелл, капель, пленок и т.д.) . К их числу относится синтез в обращенных мицеллах, в пленках Лэнгмюра - Блоджетт и в адсорбционных слоях. Ясно, что размер образующихся при этом частиц не может превосходить размер соответствующего нанореактора, поэтому указанные методы позволяют получать монодисперсные системы. К этой группе можно отнести также биомиметический и биологический методы синтеза наночастиц, в которых в качестве нанореакторов выступают биомолекулы (белки, ДНК и др.).

В четвертую группу входят методы, основанные на формировании в растворах ультрамикродисперсных коллоидных частиц при поликонденсации в присутствии поверхностно-активных веществ, предотвращающих агрегацию.

К пятой группе относятся химические методы получения высокопористых и мелкодисперсных структур (металлы Рике, никель Ренея), основанные на удалении одного из компонентов микрогетерогенной системы в результате химической реакции или анодного растворения. К числу этих методов можно отнести также традиционный способ получения нанокомпозитов путем закалки стеклянной или солевой матрицы с растворенным веществом, в результате чего происходит кристаллизация этого вещества в матрице (стекла, модифицированные полупроводниковыми или металлическими наночастицами). При этом введение вещества в матрицу может осуществляться двумя способами: добавлением его в расплав (раствор) с последующей закалкой и непосредственным введением в твердую матрицу с помощью ионной имплантации.

Одним из наиболее распространенных химических методов получения нано материалов является золь-гель-синтез. С его помощью получают гомогенные оксидные системы, химическая модификация которых (восстановление, сульфидирование и т.д.) приводит к формированию наночастиц соответствующего материала в матрице . Следует отметить, что использование золь-гель-метода позволяет получать наноматериалы с улучшенными функциональными свойствами благодаря контролю состава и структуры промежуточных продуктов. Он привлекателен также своей реализуемостью в лабораторных условиях. Однако этот метод имеет и серьезные недостатки. Во-первых, он не обеспечивает монодисперсности частиц. Во-вторых, он не позволяет получать двумерные и одномерные наноструктуры, а также пространственно-упорядоченные структуры, состоящие из наночастиц, расположенных на одинаковом расстоянии друг от друга, или из параллельных нанопластин с прослойками инертной матрицы, которые можно синтезировать в нано реакторах. И наконец, в ряде случаев получение требуемого нанокомпозита невозможно из-за химического взаимодействия частиц с гелеобразующим агентом.

Необходимо отметить, что использование свободных наночастиц и наноструктур в качестве материалов сильно затруднено ввиду метастабильности вещества в нанокристаллическом состоянии. Как уже отмечалось выше, это связано с увеличением удельной поверхности частиц по мере уменьшения их линейных размеров до нанометровых, приводящим к возрастанию химической активности соединения и усилению процессов агрегации. Чтобы предотвратить агрегацию наночастиц и защитить их от внешних воздействий (например, от окисления кислородом воздуха), наночастицы заключают в химически инертную матрицу.

Анализ литературных данных показывает, что к настоящему времени разработаны десятки способов матричной изоляции наноструктур, которые можно условно разделить на две группы: получение свободных наночастиц с последующим включением в инертную матрицу и непосредственное формирование наноструктур в объеме матрицы в процессе ее химической модификации.

Первая группа методов отличается простотой в реализации, однако накладывает серьезные ограничения на возможности выбора матрицы. В качестве последней, как правило, используют органические полимерные соединения, не отличающиеся высокой термической устойчивостью и не всегда обладающие необходимыми физическими свойствами (например, высокой оптической прозрачностью). Кроме того, при инкорпорировании не исключены процессы агрегации наночастиц.

Вторая группа методов позволяет не только избежать этих недостатков, но и непосредственно контролировать параметры наночастиц в матрице на стадии их формирования и даже менять эти параметры в процессе эксплуатации материала. Используемые для этих целей матрицы должны содержать структурные пустоты, которые могут быть заполнены соединениями, последующая модификация которых приводит к формированию наночастиц в этих пустотах. Другими словами, эти пустоты должны ограничивать зону протекания реакции с участием внедренных в них соединений, т.е. выступать в роли своеобразных нанореакторов. Очевидно, что, выбирая соединения с различной формой структурных пустот, можно осуществлять синтез наноструктур различной морфологии и анизотропии.

В качестве примера можно привести синтез наноматериалов с использованием пористых оксидных матриц (обычно SiO 2 или Аl 2 Оз) . Однако ввиду неупорядоченности пористой структуры таких матриц и достаточно широкого распределения пор по размерам с их помощью практически невозможно получить удовлетворительно сформированные наносистемы. Обычно нанокомпозиты, полученные на основе пористых оксидных матриц, используют в катализе, где требования к монодисперсности частиц и их морфологии не столь высоки. Кроме того, жесткая пористая структура таких матриц не дает возможности менять размеры и морфологию частиц во время синтеза; последние, как правило, жестко зависят от размера и морфологии пор, т.е. при использовании одного типа матрицы можно получить лишь очень ограниченный круг наноструктур.

Иногда для быстрого направленного формирования наночастиц в матрице прибегают к дополнительным физическим воздействиям, таким как ультразвук, микроволновое и лазерное облучение.

Классификация физических методов 1. 2. 3. 4. 5. 6. 7. 8. распыление (диспергирование), методы испарения–конденсации, вакуум–сублимационная технология, методы превращений в твёрдом состоянии газофазный синтез электрический взрыв проводников инкапсуляция охлаждение расплава

Методы испарения–конденсации основаны на синтезе нанообъектов порошков в результате фазового перехода пар – твёрдое тело или пар – жидкость – твёрдое тело в газовом объёме либо на охлаждаемой поверхности. Сущность метода состоит в том, что исходное вещество испаряется путём интенсивного нагрева, а затем резко охлаждается.

Классификация методов испарения конденсации 1) по варианту нагрева испаряемого материала: резистивный, лазерный, плазменный, электрической дугой, индукционный, ионный способы 2) cреда: вакуум, нейтральный газ 3) различные методы охлаждения

Схема установки для получения нанопорошка методом испарения конденсации 1 - испаряемое вещество; 2 - нагреватель; 3 - осадительная поверхность; 4 - откачка сосуда Тигельное испарение испаряемое вещество обычно помещается в тигель или лодочку из тугоплавких, химически инертных материалов: вольфрама, тантала, графита или стеклоуглерода Бестигельное испарение с помощью мощных импульсов тока, лазерного или плазменного нагрева. При этом чистота конденсата повышается.

Плазменная технология Плазма - частично или полностью ионизированный газ, образующийся в результате термической ионизации атомов и молекул при высоких температурах. Различают: слабо ионизированную или низкотемпературную плазму, умеренно ионизированную полностью ионизированную или высокотемпературную плазму. В технологических процессах обычно используют низкотемпературную плазму, получаемую при температурах 20000 К и диапазоне давлений 10~5 103 МПа.

Для генерации плазмы используются электродуговые, высокочастотные сверхвысокочастотные плазмотроны большой мощности, которые нагревают газ до очень высоких температур. Стабильную плазму низкого давления можно получить, используя инертный газ с добавкой водорода.

Схема установки для получения нанопорошков способом плазменной струи Нагрев и испарение дипергируемого материала достигаются за счет энергии струи низкотемпературной плазмы, выбрасываемой из плазмотрона Испаряемое вещество вводится в зону плазмы в виде порошка либо расходуемого электрода (анода) Образуется сильно разогретый газ, скорость охлаждения которого имеет решающее значение для дисперсности, структуры порошка, производительности 1 - тигель с образцом; 2 - плазмотрон; 3 - плазма; 4 - зона конденсации; 5 - пластинчатые сборники наноматериала с водяным охлаждением; б - емкость для сбора продукта

Конденсация диспергируемого вещества в плазменных процессах производится потоком газа охладителя охлаждаемыми поверхностями. Скорость охлаждения: более 10 5°С/м достаточен для порошков тугоплавких металлов с размерами частиц 5 100 нм. 105 108 °С/с порошки Аl с размером частиц 0, 5 50 нм и удельной поверхностью Sуд (70 30) 103 м 2 /кг. керамические и интерметаллидные материалы как нитрид бора (синтез из парогазовой фазы с BBr 3, Н 2, N 2); карбид титана (исходные фазы Ti. Cl 4, СН 4, Н 2); композиции Ti Mo C и Fe Ti C (исходные вещества Ti. Cl 4, Мо. С 15, Fe(CO)5). Форма частиц, получаемых в плазме, преимущественно сферическая, иногда с присутствием частиц с ярко выраженной огранкой

Достоинство возможность стабильного испарения материалов с высокой температурой плавления и низким давлением паров (вольфрам, молибден, тантал, оксид кремния, углерод). Недостатки: не до конца решенные вопросы фокусировки плазменной струи при давлениях ниже 25 к. Па ненадежность функционирования плазменной пушки в длительных режимах нагревания (снижает эффективность этого способа получения наноматериалов)

Плазменная установка с вращающимся электродом для получения порошков, модель УЦР Предназначена для получения металлических порошков (гранул) высокореакционных металлов, титановых сплавов методом центробежного распыления заготовок, оплавляемых плазменным нагревателем в среде инертных газов. Производство гранул титановых сплавов направлено на выпуск изделий для газотурбинных установок стационарной энергетики, перекачивающих станций магистральных газопроводов, изготовления пористых насадок (фильтров, катализаторов и т. п.) в химических производствах и др.

Метод комбинированной плазмы Более эффективное испарение диспергируемого вещества. В методе используются две плазмы: 1) плазма постоянного тока для разогрева материала, 2) плазма высокочастотного разряда, которая осуществляет плавление и испарение исходного крупного порошка или стружки. Используется для получения порошков многих металлов и металлических соединений с частицами сферической формы с размером более 50 нм

Метод лазерного нагрева Лазер - оптический квантовый генератор. является источником оптического когерентного излучения, характеризующегося высокой направленностью и большой плотностью энергии. Лазеры бывают: газовые, жидкостные твердотельные. Применение лазерного нагрева позволяет избежать недостатков, присущие плазменному методу, при сохранении уровня рабочих температур. С помощью этой технологии испарения получены нанопорошки Ti, Ni, Mo, Fe, Аl со средним размером частиц в несколько десятков нанометров.

Нагрев электрической дугой Схема реактора с электродуговым плазмотроном постоянного тока: 1 - ввод плазмообразующего газа; 2 - электроды; 3 - плазма; 4 - ввод дисперсного вещества; 5 - ввод запального холодного газа; 6 - вывод продукта

1) Инертная среда 2) Смешанная, инертно водородная среда (Аг Н 2) – более эффективно. В этом случае происходит взаимодействие металла с атомарным водородом, растворимость которого намного выше, чем моле кулярного. Пересыщение расплава водородом приводит к ускорению испарения металла. Производительность процесса возрастает в 10 104 раз по сравнению с традиционным вариантом. Используется для получения нанопорошков Fe, Ni, Со, Си и других металлов, а также двойных композиций, например Fe Cu, Fe Si. Форма частиц близка к сферической.

Электрический взрыв проводников Принципиальная схема установки для получения нанопорошка взрывом проводника: 1 - проводник; 2 - разрядник; 3 - наполнитель Тонкие проволочки металла диаметром 0, 1 1 мм помещают в камеру, где импульсно к ним подают ток большой силы. Продолжительность импульса 10 5 10 7 с, плотность тока 104 106 А/мм 2. Проволочки мгновенно разогреваются и испаряются. Процесс проводится в аргоне или гелии при давлении 0, 1 60 МПа. Электровзрыв проводника сопровождается резким изменением агрегатного состояния металла в резуль тате интенсивного выделения в нем энергии, а также генера цией ударных волн, при этом создаются условия для быстрого (со скоростью более 1 * 107 К/с) нагрева метал лов до высоких температур (Т > 104 К)

На стадии взрыва металл перегревается выше температуры плавления, 3 расширение вещества проис ходит со скоростью до 5*10 м/с, и перегретый металл взрывообразно диспергируется Давление и температура во фронте возникающей ударной волны достигают несколь ких сотен мегапаскалей (тысяч атмосфер) и ~ 4 К Образование частиц происходит в свободном полете. Конденсат металла осаждается на стенках камеры в виде дисперсного порошка. Регулируя условия взрыва, можно получать порошки с размером частиц от 100 мкм до 50 нм. Средний размер частиц монотонно убывает с ростом плотности тока и сокращением длительности импульса Сферические порошки Fe, Ti, W, Mo, Со с размером частиц 40 100 нм – инертная среда, порошки пирофорны (воспламеняются в воздухе), их пассивацию проводят медленным окислением или нанесением покрытий оксидов металлов Аl, Ti, Zr , нитриды, карбиды или их смеси с размером частиц 10 50 нм – среда с воздухом, дистиллированной водой, парафина, технического масла

Диспергирование металла является следствием развития неустойчивостей (магнитогидродинамических, перетяжечных или обуслов ленных силами поверхностного натяжения). Разрушение проводника происходит неоднородно по длине. Испарение локализуется в зонах пе ретяжек. При этом до начала разрушения проводника испаряется отно сительно небольшая его часть. Большая же часть разбрызгивается в ви де капель жидкого металла, которые затем могут испаряться за счет энергии, выделяющейся в дугах, возникающих между каплями. Плотность тока при медленном электровзрыве не более 107 А/см 2.

Быстрый взрыв - время ввода энергии в проводник меньше времени развития неустойчивостей. В процессе расширения продукты взрыва сохраняют цилиндрическую симметрию без изгибов и перетяжек. При этом обеспечивается однородность нагрева материала проводника при взрыве, что является одним из наиболее существенных факторов, влияющих на образование частиц в условиях ЭВП. 7 Быстрый взрыв про исходит при плотностях тока, больших 10 А/см 2 При этом введенной энергии, как правило, достаточно для полного испарения проводника.

Сверхбыстрый взрыв происходит обычно при плотностях тока более 108 А/см 2 преимущественно на проводниках большого диаметра. В этом режиме процесс разрушения развивается неоднородно по радиу су проводника. Взрываются последовательно только его поверхностные слои, в то время как центральные области могут оставаться относитель но олодными. х

Еще один вид разрушения провод ников, е относящийся к взрыву, н но зачастую имеющий место при про текании разрядного тока через проводник. Это распад проводника на капли после его плавления случай, когда подводимой энергии недос таточно для испарения проводника.

В зависимости от плотности окружающей среды (ϒ) электрические взрывы проводников условно разделяют на три класса: взрывы при малой плотности окружающей среды (в вакууме, ϒ 10 1 г/см 3); взрывы в конденсированных средах (в воде, других жидкостях, твердых телах, ϒ > 0, 6 0, 8 г/см 3) Помещение проводника в более плотную среду задерживает развитие неоднородностей, расширение испаряемого материала

Установка "УДП 150 « для получения нанопорошков методом электровзрыва проводников От высоковольтного источника питания - 1 заряжается ёмкостной накопитель энергии - 2. Механизм подачи проволоки - 3 обеспечивает автоматическую установку взрываемого отрезка проволоки - 4 между двумя электродами. Как только отрезок проволоки займет заданное положение, включается коммутатор - 5, происходит разряд накопителя на этот отрезок проволоки, и он взрывается. Образовавшийся порошок собирается в накопителе - 6, пассивируется и поступает на дальнейшую переработку. Объем камеры - 7 вакуумируется, а затем заполняется газовой атмосферой. Эти функции выполняет система газового снабжения - 8.

Металл проволоки Производительность установки, г/час Al 50 Cu 100 W 80 Микрофотография частиц нанопорошка (100 нм и менее) вольфрама

Среда Процесс в вакууме эффективны для получения порошков с особыми свойствами, а также для большого числа труднолетучих и тугоплавких материалов. Получают нанопорошки металлов Ni, Al, Zn, Pb, Mn, Fe, Co, а также порошки сплавов с размером частиц 50 100 нм. Процесс в среде инертного газа обычно поддерживается давление 10 102 Па. Инертный газ гелий, аргон, ксенон или азот. Получают порошки щелочных и щелочноземельных, т. е. химически активных металлов, давление около 1 атм, в среде аргона. Размер получаемых этим способом частиц составляет 10 100 нм.

Способы охлаждения Эффективны с точки зрения уменьшения размера частиц. охлаждающие поверхности конденсация в вакууме на движущийся масляный подслой позволяет получать частицы диаметром 10 нм, а в ряде случаев даже меньше. Продуктом процесса является взвесь порошка в масле, которая часто может применяться и без последующей сепарации. Также этим методом получены аморфные порошки металлов с удельной поверхностью 10 25 м /г.

Защита наноматериалов от окисления конденсации в различные среды Матричный синтез наночастиц металлов: конденсация атомов металлов в вакууме на поверхность стационарных или растущих органических пленок матриц при низких температурах (~77 К). Для испарения металлов в этом случае используется резистивный и электроннолучевой нагрев. В результате образуются очень мелкие частицы разме ром 1 10 нм либо аморфные осадки. Этим способом получены частицы Cr, Ni, Ап в бензольной матрице. По сравнению с конденсацией металлов на неорганические подложки матричный метод обладает преимуществами: относительно легкое получение металлоорганических композитов, из которых в ряде случаев удается выделять металлические порошки возможность осуществления катализа непосредственно в ходе процесса без промежуточных стадий выделения и приготовления катализатора

Преимущества методов испарения конденсации: высокую производительность; возможность диспергирования без контакта с оборудованием; возможность одностадийного получения пленок, защитных покрытий, эмульсий, композитов. Недостатки методов: необходимость сложного оборудования, высокую трудоемкость; использование в качестве исходного вещества уже готовых металлов или материалов нужного состава; широкое распределение частиц по размерам

Вакуум–сублимационная технология В основе метода лежит изменение агрегатного состояния вещества - возгонка Процесс получения нанопорошков включает 3 основные стадии. 1. Готовится исходный раствор обрабатываемого вещества или нескольких веществ. 2. Замораживания раствора - имеет целью зафиксиро вать равномерное пространственное распределение компо нентов, присущее жидкости, для получения минимально возможного размера кристаллитов в твердой фазе. 3. Третья стадия - удаление из замороженного раствора кристаллитов растворителя путем его возгонки.

В результате проведения всех технологических операций получается пористое тело, образованное кристаллитами растворенных веществ, слабо связанными между собой посредством «мостов» . Незначительное механическое воздействие разрушает пористое тело, в результате чего образуется порошок, размер частиц которого по порядку величины равен размеру частиц растворенных солей, сформировавшихся на стадии замораживания. Эффективность применения вакуум сублимационной тех нологии зависит от 2 й стадии, поскольку именно стадия замораживания раствора исходных веществ предопределяет структуру продукта и его свойства. Например, с повышением скорости замораживания размер образующих ся структурных элементов, как правило, меньшается, а у равномерность пространственного распределения компонен тов возрастает.

Основные способы замораживания исходного раство ра, применяемыми для получения нанопорошков: 1. распыление в криогенные жидкости (обычно в жидкий азот), 2. распыление в вакуум (испарительное замораживание), 3. рас пыление ли тонкослойное нанесение раствора на и охлаждаемую металлическую поверхность (контактная кристал лизация) Достаточная эффективность и устойчивая реализация технологического процесса – для 2 го и 3 го способов

Испарительное замораживание 1 - смеситель; 2 - вакуумная камера и холодильник; 3 - нагреватель; 4 - накопитель Испарительное замораживание (или самозамораживание) растворов реализуется за счет интенсивного испарения растворителя в вакууме, при давлении более низком, чем давление, соответствующее тройной точке В холодильную установку, где поддерживается рабочее давление 0, 05 мм рт. ст. и температура не выше 40 °С, из смесителя подается исходный раствор. При этом струя жид кости диспергируется на капли, которые замораживаются в полете. Образовавшиеся криогранулы заполняют емкость нагревателя, в котором осуществляется процесс сублимации из них растворителя. В результате получается продукт в виде массы сферических гранул, состоящих из растворенного ве щества.

Наноматериалы: ферриты, окси ды, нитриды, карбиды, оединения с с высокотемпературной сверхпроводимостью и др. Преимущества вакуум сублимационной технологии: гранулированность продукта, что облегчает его транс портировку при минимальном пылеобразовании и спо собствует длительному хранению без заметного изменения свойств; низкое пылеобразование, что повышает безопасность синтеза наноматериалов; благоприятные предпосылки для организации непре рывного производства. Недостатки: ограничения по растворимости сужают перечень полу чаемых этим методом материалов; для проведения процесса сублимации необходимо спе циальное оборудование.

Получение наноматериалов с использованием твердофазных превращений Диспергирование осуществляется в твердом веществе без изменения агрегатного состояния Контролируемая кристаллизация из аморфного состоя ния один из способов получения массивных на номатериалов. Метод заключается в получении аморфного материала, например, закалкой из жидкого состояния, а за тем его кристаллизацией в условиях контролируемого на грева. Данным способом можно получать наноматериалы, склонные к аморфизации: различные сплавы переходных металлов с неметаллами, например, Fe B, Fe Si B, Fe Cr B, Fe Mo Si B, Ti Ni Si, Ni P, Fe Cn Nb B, а также Se, Fe Zr, Al Cr Ce Co и др.

Получаемые в результате процесса размеры кристаллитов зависят от природы материала и вида термообработки. Например, размер зерна в селене гексагональной модификации в зави симости от температуры отжига имел величину от 3 до 70 нм, 1 а в сплаве Fe Mo Si B - от 15 до 200 нм. Преимущества метода контролируемой кристаллизации из аморфного со стояния возможность получения пленочных и объемных нано и аморфно кристаллических материалов; изготовление беспористых материалов. Огра ничения: по составам, которые доступны аморфизации; по размерам получаемой продукции.

Способ облуче ния сплавов высокоэнергетическими частицами В результате радиационного воздействия происходит формирование дисло кационных петель и их перестройка в субграницы и границы нанокристаллов. Облучение проводится ионами Кг с энер гией 1, 5 Мэ. В при температурах 500 700 °С на установке, сов мещающей электронный микроскоп и ускоритель ионов. Формирование наноструктуры осуществлено на аустенитных сталях Х 15 Н 15 МЗТ 1 и Х 16 Н 8 МЗ. Размер зерен наноматериа лов составил 20 85 нм.