Решение уравнений способом замены переменной. Решение уравнений с помощью замены

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Решение уравнений методом замены переменных

Большинство жизненных задач

решаются как алгебраические уравнения:

приведением их к самому простому виду.

Л.Н.Толстой .

Цель урока : организовать учебную деятельность учащихся по освоению ими способов решения целых уравнений высших степеней методом замены переменной; познакомить учащихся с понятиями, приёмами решения возвратных и симметрических уравнений.

Задачи: образовательная: продолжать развивать умение применять метод замены

переменной при решении уравнений; формирование умения видеть один и тот же метод решения уравнений в различных ситуациях; сформировать представление о методах и способах решения нестандартных задач и алгебраических уравнений на уровне, превышающем уровень государственных образовательных стандартов;

развивающая: развитие мышления учащихся; развитие памяти; развитие

логического мышления, способности четко формулировать свои мысли; развитие воображения учащихся; развитие устной речи.

воспитательная: воспитание наблюдательности; воспитание аккуратности

при выполнении записей на доске и в тетради; воспитание самостоятельности при выполнении практических работ.

Ход урока

    Организационный момент.

    Актуализация и систематизация знаний.

Задание №1 . Разгадайте кроссворд. Ответы записывайте только в именительном падеже.

По горизонтали:

4.Чем является выражение для квадратного уравнения? (дискриминант)

6.Значение переменной, при которой уравнение обращается в верное равенство. (корень)

8.Уравнение вида
, где
. (биквадратное)

9.Французский математик, имеющий отношение к квадратным уравнениям. (Виет)

10.Уравнение, в котором левая и правая части являются целыми выражениями. (целое)

11. Уравнения с одной переменной, имеющие одинаковое множество корней. (равносильные)

По вертикали:

1.Множество корней уравнения. (решение)

2.Решение уравнения
. (ноль)

3.Равенство, содержащее переменную. (уравнение)

5.Квадратное уравнение, в котором один из коэффициентов b или с равен 0. (неполное)

7. Квадратное уравнение, в котором первый коэффициент равен единице. (приведенное)

Чему мы сегодня посвятим наше занятие? (Решению уравнений)

Задание №2 . Каким способом вы решали бы уравнения каждой из групп?

ОТВЕТЫ: Примеры группы 1) лучше решать разложением на множители с помощью вынесения общего множителя за скобки или с помощью формул сокращенного умножения.

Примеры группы 2) лучше решать способом группировки и разложения на множители.

Примеры группы 3) лучше решать введением новой переменной и переходом к квадратному уравнению.

1 Какой множитель вы вынесли бы за скобки в примерах группы 1 ?

ОТВЕТЫ:

Как вы сгруппировали бы слагаемые в примерах группы 2 ?

ОТВЕТЫ:

Что бы вы обозначили через новую переменную в примерах группы 3?

ОТВЕТЫ:

Как можно разложить на множители многочлен
?

ОТВЕТЫ: .

Сегодня на уроке вы покажете свои знания по теме «Решение уравнений методом замены переменной»

Запишите в тетрадях тему урока.

Сегодня на занятии мы рассмотрим один из способов решения уравнений высших степеней - метод замены переменной; познакомимся с понятиями, приёмами решения возвратных и симметрических уравнений.

Искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Задание №3 .

Решите уравнение. (задание у доски одновременно решают 2 ученика.)

а) (Первый ученик решает у доски с объяснением.)

б) (Второй учащийся решает уравнение молча, затем объясняет решение, класс слушает и задает вопросы, если что-то непонятно.)

1 ученик Замена:
.

2 ученик Замена:
.

(Дополнительно для тех, кто раньше справился с предыдущими уравнениями).

. .

3 ученик

(Ход решения учащимися комментируется с места.)

РЕШЕНИЕ: Вынесем общий множитель: ,

откуда
или
, т.е.


Ответ:

    Углубление и расширение знаний

Продолжаем работу. Вы видите на слайде уравнение: х 4 -5х 3 +6х 2 -5х+1=0.

Каким способом вы предложите его решить? Как нам быть?

Возможно ли решить его в рамках школьных программ по математике? Можно ответить нет. Ведь стандартные методы решения уравнений в школе предусматривают решение уравнений не выше второй степени. Но можно вспомнить, что отдельные уравнения более высоких степеней в школе все-таки решались. Правда, способы их решения суть творческое применение известных способов, сведения их к решению одного или нескольких уравнений степени не выше второй.

Посмотрите очень внимательно на это уравнение? Что вы заметили?(в этом уравнении коэффициенты равноудалённые от концов равны)

Ребята, уравнение такого вида, когда коэффициенты, равноудалённые от концов совпадают, называются возвратными . Это уравнение сводится к квадратному с помощью подстановки .

Предлагаю вам следующий алгоритм их решения:

Алгоритм решения возвратных уравнений.

1.Разделить обе части уравнения на х 2 .

2.Сгруппировать слагаемые (первый с последним, второй с четвёртым).

Привести уравнение к виду а + с = 0

3. Ввести новую переменную t = ,тогда выполнено t 2 = , т.е. = t 2 – 2.

4. Выполнить подстановку и решить квадратное уравнение.

5.Вернуться к замене и решить получившиеся уравнения.

6.Записать ответ.

Ребята изучают алгоритм.

Ученик у доски по алгоритму и с помощью учителя решает уравнение, остальные пишут в тетрадях.

4 – 5х 3 – 38x 2 – 5х + 6 = 0.

Решение.

6х 2 – 5х – 38 – 5/х + 6/х 2 = 0.

6(х 2 + 1/х 2) – 5(х + 1/х) – 38 = 0.

Вводим t: подстановка (x + 1/x) = t. Замена: (x 2 + 1/x 2) = t 2 – 2, имеем:

6t 2 – 5t – 50 = 0.

t = -5/2 или t = 10/3.

Вернемся к переменной х. После обратной замены решим два полученных уравнения:

1) x + 1/x = -5/2;

х 2 + 5/2 х +1 = 0;

х = -2 или х = -1/2.

2) x + 1/x = 10/3;

х 2 – 10/3 х + 1 = 0;

х = 3 или х = 1/3.

Ответ: -2; -1/2; 1/3; 3.

В проблему уравнений 3-й и 4-й степеней большой вклад внесли итальянские математики 16 века Н.Тарталья, А.Фиоре, Д.Кардано и др. В 1535 г. между А.Фиоре и Н.Тартальей состоялся научный поединок, на котором последний одержал победу. Он за 2 часа решил 30 задач, предложенных Фиоре, а сам Фиоре не смог решить ни одной, заданной ему Тартальей.

Ребята, и ещё одно уравнение я хочу вам сегодня предложить, я его взяла из сборника задач для подготовки к ОГЭ.

. ((х + 1)(x + 4))((х + 2)(x + 3)) = 24,

(х 2 + 5х + 4)(х 2 + 5х + 6) = 24.

Сделав замену х 2 + 5х + 4 = t, имеем уравнение

t(t + 2) = 24, оно является квадратным:

t 2 + 2t – 24 = 0.

t = -6 или t = 4.

После выполнения обратной замены, легко находим корни исходного уравнения.

Ответ: -5; 0.

    Творческий перенос знаний и навыков в новые условия.

В начале урока говорили о том, что если в уравнении есть повторяющиеся элементы, то можно применять метод замены переменной. Мы еще не умеем решать тригонометрические и иррациональные уравнения. Давайте посмотрим, сможем ли мы применять к ним этот метод, если будем знать, как решать простейшие тригонометрические и иррациональные уравнения.

Задание 1: Назвать замену переменной в следующих уравнениях.


Задание 2: Составить несколько уравнений, в основе решения которых лежит метод замены переменной.

    Подведение итогов.

Итак, ребята, наш урок подошёл к концу. Давайте подведём итоги нашего урока.

Какие цели мы ставили в начале урока?

Наши цели достигнуты?

Что нового мы узнали на уроке?

    Домашнее задание.

4х 4 – 8х 3 + 3х 2 – 8х + 4 = 0

(х+1)(х+2)(х+4)(х+5) = 40

. (уравнение итальянских математиков)

А закончить урок мне хочется словами великого учёного Эйнштейна А. :

« Мне приходиться делить своё время между политикой и уравнениями. Однако уравнение, по – моему, гораздо важнее, потому что политика существует только для данного момента, а уравнение будет существовать вечно».

Спасибо за урок! До свидания!

Замена переменной в неопределенном интеграле. Формула преобразования дифференциалов. Примеры интегрирования. Примеры линейных подстановок.

Метод замены переменной

С помощью замены переменной можно вычислить простые интегралы и, в некоторых случаях, упростить вычисление более сложных.

Метод замены переменной заключается в том, что мы от исходной переменной интегрирования, пусть это будет x , переходим к другой переменной, которую обозначим как t . При этом мы считаем, что переменные x и t связаны некоторым соотношением x = x(t) , или t = t(x) . Например, x = ln t , x = sin t , t = 2 x + 1 , и т.п. Нашей задачей является подобрать такую зависимость между x и t , чтобы исходный интеграл либо свелся к табличному, либо стал более простым.

Основная формула замены переменной

Рассмотрим выражение, которое стоит под знаком интеграла. Оно состоит из произведения подынтегральной функции, которую мы обозначим как f(x) и дифференциала dx : . Пусть мы переходим к новой переменной t , выбрав некоторое соотношение x = x(t) . Тогда мы должны выразить функцию f(x) и дифференциал dx через переменную t .

Чтобы выразить подынтегральную функцию f(x) через переменную t , нужно просто подставить вместо переменной x выбранное соотношение x = x(t) .

Преобразование дифференциала выполняется так:
.
То есть дифференциал dx равен произведению производной x по t на дифференциал dt .

Тогда
.

На практике, чаще всего встречается случай, в котором мы выполняем замену, выбирая новую переменную как функцию от старой: t = t(x) . Если мы догадались, что подынтегральную функцию можно представить в виде
,
где t′(x) - это производная t по x , то
.

Итак, основную формулу замены переменной можно представить в двух видах.
(1) ,
где x - это функция от t .
(2) ,
где t - это функция от x .

Важное замечание

В таблицах интегралов переменная интегрирования, чаще всего, обозначается как x . Однако стоит учесть, что переменная интегрирования может обозначаться любой буквой. И более того, в качестве переменной интегрирования может быть какое либо выражение.

В качестве примера рассмотрим табличный интеграл
.

Здесь x можно заменить любой другой переменной или функцией от переменной. Вот примеры возможных вариантов:
;
;
.

В последнем примере нужно учитывать, что при переходе к переменной интегрирования x , дифференциал преобразуется следующим образом:
.
Тогда
.

В этом примере заключена суть интегрирования подстановкой. То есть мы должны догадаться, что
.
После чего интеграл сводится к табличному.
.

Можно вычислить этот интеграл с помощью замены переменной, применяя формулу (2) . Положим t = x 2 + x . Тогда
;
;

.

Примеры интегрирования заменой переменной

1) Вычислим интеграл
.
Замечаем, что (sin x)′ = cos x . Тогда

.
Здесь мы применили подстановку t = sin x .

2) Вычислим интеграл
.
Замечаем, что . Тогда

.
Здесь мы выполнили интегрирование заменой переменной t = arctg x .

3) Проинтегрируем
.
Замечаем, что . Тогда

. Здесь, при интегрировании, произведена замена переменной t = x 2 + 1 .

Линейные подстановки

Пожалуй, самыми распространенными являются линейные подстановки. Это замена переменной вида
t = ax + b ,
где a и b - постоянные. При такой замене дифференциалы связаны соотношением
.

Примеры интегрирования линейными подстановками

A) Вычислить интеграл
.
Решение.
.

B) Найти интеграл
.
Решение.
Воспользуемся свойствами показательной функции .
.
ln 2 - это постоянная. Вычисляем интеграл.

.

C) Вычислить интеграл
.
Решение.
Приведем квадратный многочлен в знаменателе дроби к сумме квадратов.
.
Вычисляем интеграл.

.

D) Найти интеграл
.
Решение.
Преобразуем многочлен под корнем.

.
Интегрируем, применяя метод замены переменной .

.
Ранее мы получили формулу
.
Отсюда
.
Подставив это выражение, получим окончательный ответ.

Урок и презентация на тему: "Метод замены переменной. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
1С: Школа. Решаем задачи по геометрии. Интерактивные задания на построение в пространстве для 10–11 классов
Алгебраические задачи с параметрами, 9–11 классы

Этот метод довольно часто встречается при решении уравнений, и мы с вами им не раз пользовались.Его можно использовать в следующих случаях:

  • Если исходное уравнение $f(x)=0$ имеет сложный вид, но его удалось преобразовать к уравнению вида $h(g(x))=0$.
  • Нужно произвести замену переменных $u=g(x)$.
  • Решить уравнение $h(u)=0$, найти корни $u_1$, $u_2$, … $u_n$.
  • Ввести обратную замену $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$.
  • Решить каждое из уравнений $g(x)=u_1$, $g(x)=u_2$, … , $g(x)=u_n$. Корни каждого из уравнений и будут решениями исходного уравнения.
Метод замены переменной, требует хорошего навыка и опыта работы с уравнениями. После решения большого количества уравнений общий вид этих уравнений хорошо запоминается и придумать замену, приводящую к уже известным уравнениям, становится гораздо проще. Стоит также проверять все корни, полученные при замене уравнений и только после этого возвращаться к исходной переменной.

Пример.
Решить уравнение: $8x^6+7x^3-1=0$.

Решение.
Введем замену $y=x^3$. Тогда наше уравнение сводится к квадратному уравнению:
$8y^2+7y-1=0$,
$(8y-1)(y+1)=0$,
$y_1=\frac{1}{8}$ и $y_2=-1$.

На данном этапе при решении более сложных уравнений следует проверить полученные корни.
Введем обратную замену: $x^3=\frac{1}{8}$ и $x^3=-1$.
Корни данных уравнений найти легко: $x_1=\frac{1}{2}$ и $x_2=-1$.

Ответ: $х=0,5$ и $х=-1$.

Пример.
Решить уравнение: $\sqrt{\frac{2x+3}{2x-1}}+4\sqrt{\frac{2x-1}{2x+3}}=4$.

Решение.
Проведем равносильные преобразования:
$\sqrt{\frac{2x-1}{2x+3}}=(\frac{2x-1}{2x+3})^{\frac{1}{2}}=(\frac{2x+3}{2x-1})^{-\frac{1}{2}}=((\frac{2x+3}{2x-1})^{\frac{1}{2}})^{-1}=\frac{1}{\sqrt{\frac{2x+3}{2x-1}}}$.

Введем замену: $u=\sqrt{\frac{2x+3}{2x-1}}$, тогда наше уравнение сводится к $u+\frac{4}{u}=4$. $u^2-4u+4=0$, откуда $u=2$.

Введем обратную замену: $\sqrt{\frac{2x+3}{2x-1}}=2$.

$2x+3=4(2x-1)$, решив линейное уравнение $х=1\frac{1}{6}$.

Пример.
Решить уравнение: $2^x+2^{1-x}=3$.

Решение.
Наше уравнение сводится к равносильному уравнению: $2^x+\frac{2}{2^x}=3$.

Введем замену: $t=2^x$.
$t+\frac{2}{t}=3$,
$t^2-3t+2=0$,
$(t-2)(t-1)=0$,
$t_1=2$ и $t_2=1$.

Введем обратную замену: $2^x=2$ и $2^x=1$. Откуда: $х=1$ и $х=0$.

Ответ: $х=1$ и $х=0$.

Пример.
Решить уравнение: $lg^2(x^2)+lg(10x)-6=0$.

Решение.
Преобразуем наше уравнение.
$lg^2(x^2)=(lg(x^2))^2=(2lg(x))^2=4lg^2x$.
$lg(10x)=lg10+lgx=1+lgx$.

Исходное уравнение равносильно уравнению: $4lg^2x+lgx-5=0$.

Введем замену: $u=lg(x)$.
$4u^2+u-5=0$,
$(4u+5)(u-1)=0$.

Введем обратную замену: $lgx=-1,25$ и $lgx=1$.
Ответ: $x=10^{-\frac{5}{4}}$ и $x=10$.

Пример.
Решить уравнение: $sin(x)cos(x)-6sin(x)+6cos(x)+6=0$.

Решение.
Введем замену: $cos(x)-sin(x)=y$.

Тогда: $(cos(x)-sin(x))^2=1-2sin(x)cos(x)$.
$sin(x)cos(x)=\frac{1-y^2}{2}$.

Исходное уравнение равносильно:
$\frac{1-y^2}{2}+6y+6=0$,
$1-y^2+12y+12=0$,
$y^2-12y-13=0$,
$(y-13)(y+1)=0$.

Введем обратную замену: $cos(x)-sin(x)=13$ - очевидно, что решений нет, так как косинус и синус ограничены по модулю единицей.

$cos(x)-sin(x)=-1$ - умножим обе части уравнения на $\frac{\sqrt{2}}{2}$.
$\frac{\sqrt{2}}{2}cos(x)-\frac{\sqrt{2}}{2}sin(x)=-\frac{\sqrt{2}}{2}$.
$sin(\frac{π}{4}-x)=-\frac{\sqrt{2}}{2}$.
$\begin {cases} \frac{π}{4}-x=-\frac{π}{4}+2πn, \\ \frac{π}{4}-x=-\frac{3π}{4}+2πn. \end {cases}$
$\begin {cases} x=\frac{π}{2}+2πn, \\ x=π+2πn. \end {cases}$

Ответ: $x=\frac{π}{2}+2πn$ и $π+2πn$.

Задачи для самостоятельного решения

Решить следующие уравнения:
1. $x^8+3x^4-4=0$.

2. $\sqrt{\frac{5x-1}{x+3}}+5\sqrt{\frac{x+3}{5x-1}}=6$.

3. $5^x+5^{2x+1}=-4$.
4. $2cos^2(x)-7cos-4=0$.
5. $5sin(2x)-11sin(x)=11cos(x)-7$.

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это всё так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

В элементарной математике выделяют два вида уравнений:алгебраические и трансцендентные.К алгебраическим уравнениям относятся:

линейное; квадратное; кубическое; биквадратное; уравнение четвертой степени общего вида; двучленное алгебраическое уравнение n-й степени; степенное алгебраическое; – возвратное (алгебраическое); – алгебраическое уравнение ой степени общего вида;

10. дробные алгебраические уравнения, т.е. уравнения, содержащие многочлены и алгебраические дроби (дроби вида

, где и – многочлены);

11. иррациональные уравнения, т.е. уравнения, содержащие радикалы, под которыми располагаются многочлены и алгебраические дроби;

12. уравнения, содержащие модуль, под модулем которых содержатся многочлены и алгебраические дроби.

Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. В нашей работе рассмотрим подробнее алгебраические уравнения.

В учебной и методической литературе традиционно рассматриваются специальные приёмы решения уравнений. Между тем специфика решения уравнений каждого раздела – дело второстепенное. По существу, применяются четыре основных метода:

Замена уравнения h (f(x))=h (g(x)) уравнением f(x)=g(x);

Метод замены переменной;

Метод разложения на множители;

Функционально-графический метод и их различные модификации.

Самый распространённый из них – метод замены переменной.

Исходя из этого, мы формулируем цель своей работы: изучить возможности метода замены неизвестного при решении алгебраических уравнений и продемонстрировать их применение в стандартных и нестандартных ситуациях. Для того, чтобы достичь поставленной цели необходимо решить следующие задачи:

1. Раскрыть содержание основных понятий и утверждений, относящихся к теории решения уравнений: решение уравнения, равносильность и следствие, общие методы решения уравнений.

2. Выявить возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных ситуациях.

3. Осуществить типизацию приёмов введения новых неизвестных при решении алгебраических уравнений и выявить критерии их применимости

4. Составить комплект типовых задач, сводящихся к применению метода замены при решении уравнений, и продемонстрировать их решение.


1. Основные понятия и утверждения, относящиеся к теории решения уравнений

В первой главе нашей работы раскроем содержание основных понятий и утверждений, относящихся к теории решения уравнений.

С понятием «уравнение» на уроках математики мы знакомимся уже в начальной школе, а задача «решить уравнение», вероятно, наиболее часто встречающаяся задача. Тем не менее дать точное определение понятия «уравнение», точно определить, что значит «решить уравнение», не выходя далеко за рамки курса элементарной математики, мы не можем. Для этого необходимо привлекать весьма серьёзные логические и даже философские категории. Нам вполне достаточно знакомства с этими понятиями на уровне «здравого смысла».

Рассмотрим два уравнения А и В с одним и тем же неизвестным. Мы будем говорить, что уравнение В является следствием уравнения А, если любой корень уравнения А является корнем уравнения В.

Уравнения называются равносильными, если любой корень одного из них является корнем другого и наоборот. Таким образом, уравнения равносильны, если каждое из них является следствием другого.

Из данных определений следует, например, что два уравнения, не имеющие решений, равносильны. Если А не имеет решений, то В является следствием А, каково бы ни было уравнение В.

Определим понятие «решить уравнение». Решить уравнение – значит найти все такие значения входящих в него неизвестных, которые обращают уравнение в тождество. Эти значения называются корнями уравнения.

Процесс решения уравнений заключается в основном в замене данного уравнения другим, ему равносильным.

Как было ранее сказано, выделяют четыре наиболее общих метода, используемых при решении уравнений любых видов. Остановимся подробнее на каждом методе.

Метод замены уравнения h (f(x))=h (g(x)) уравнением f(x)=g(x) можно применять только в том случае, когда

- монотонная функция, которая каждое своё значение принимает по одному разу. Если данная функция немонотонная, то указанный метод применять нельзя, поскольку возможна потеря корней.

Суть метода разложения на множители заключается в следующем: уравнение

можно заменить:

Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние.Идея графического метода решения уравнения

такова: нужно построить графики функций , и найти точки их пересечения. Корнями уравнения служат абсциссы этих точек. Этот метод позволяет определить число корней уравнения, угадать значение корня, найти приближённые, а иногда и точные значения корней. В некоторых случаях построение графиков функций можно заменить ссылкой на какие-либо свойства функций (потому-то мы говорим не о графическом, а о функционально-графическом методе решения уравнений). Если, например, одна из функций возрастает, а другая – убывает, то уравнение либо не имеет корней, либо имеет один корень.Упомянем ещё одну довольно красивую разновидность функционально-графического метода: если на промежутке наибольшее значение одной из функций , равно и наименьшее значение другой функции тоже равно , то уравнение равносильно на промежутке системе уравнений.

Раскроем суть метода замены переменной: если уравнение