Тонкие линзы. Ход лучей

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь - скорость света в вакууме, и - векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Световые лучи.

Линии векторного поля , вдоль которых распространяется свет, называются лучами. Если поверхности равных фаз представляют собой параллельные плоскости, то волна называется плоской. Плоской волне соответствует параллельный пучок лучей, так как лучи в изотропной среде перпендикулярны поверхностям равных фаз. Сферической волной называется волна с поверхностями равных фаз сферической формы. Ей соответствует пучок лучей, выходящих из одной точки или собирающихся в одну точку. В этих двух случаях говорят соответственно о расходящейся и о сходящейся сферической волне.

Приближение геометрической оптики.

Если длина световой волны очень мала по сравнению со всеми размерами оптических приборов, то явлениями дифракции и интерференции можно пренебречь. Такое рассмотрение распространения света называется приближением геометрической оптики.

Геометрическая оптика обычно ограничивается рассмотрением распространения света в однородных средах и предметах, состоящих из однородных сред. Распространение света в среде с плавно изменяющимся показателем преломления описывается уравнением эйконала.

Отражение и преломление света.

Если световая волна распространяется в однородной среде без препятствий, то волна распространяется по прямым линиям - лучам. На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1). Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред (). Угол падения равен углу отражения . Угол преломления можно найти из равенства

где и - показатели преломления первой и второй среды.

Отражение от плоского зеркала.

Плоское зеркало, как и сферическое, отражает лучи света в соответствии с законом отражения (угол падения равен углу отражения). Свет после отражения от плоского зеркала во всех смыслах распространяется так, как если бы вместо зеркала стояло окошко, а источник света располагался бы за поверхностью зеркала, за окошком. Интересно, что изображение в зеркале находится не просто в другом месте, оно вывернуто "наизнанку", при этом "правое" и "левое" меняются местами. Например, правая спираль становится левой спиралью.

Преломление света, также как и отражение, можно рассматривать, как "кажущееся" изменение положения источника света. Этот факт проявляется в кажущемся изломе прямой палки, наполовину опущенной в воду под углом к поверхности воды. Мнимое положение источника света в данном случае будет различаться для лучей, падающих на границу раздела двух сред под различными углами. По этой причине обычно избегают говорить о мнимом положении источника света при преломлении.

Призма.

В задачах с призмами поворот света призмой можно рассматривать как два последовательных преломления света на плоских гранях призмы при входе света в призму и при его выходе.

Особый интерес представляет частный случай призмы с малым углом при вершине ( на рис. 2). Такую призму называют тонкой призмой. Обычно рассматриваются задачи, в которых свет падает на тонкую призму почти перпендикулярно ее поверхности. При этом за два преломления лучи света поворачивают на малый угол в плоскости перпендикулярной ребру призмы в сторону утолщения призмы (рис. 2). Угол поворота не зависит от угла падения света в приближении малых углов падения. Это означает, что призма поворачивает "кажущееся" положение источника света на угол в плоскости перпендикулярной ребру призмы.

Из двух таких тонких призм состоит, в частности, бипризма Френеля (рис. 3), проходя через которую свет от точечного источника распространяется далее так, как если бы свет излучался двумя точечными когерентными источниками.

Оптическая ось.

Оптической осью называется прямая линия, проходящая через центры кривизны отражающих и преломляющих поверхностей. Если система имеет оптическую ось, то это центрированная оптическая система .

Линза.

Обычно прохождение света через линзу рассматривается в приближении параксиальной оптики, это означает, что направление распространения света всегда составляет малый угол с оптической осью, и лучи пересекают любую поверхность на малом расстоянии от оптической оси.

Линза может быть собирающей или рассеивающей.

Лучи, параллельные оптической оси, после собирающей линзы проходят через одну и ту же точку. Эта точка называется фокусом линзы. Расстояние от линзы до ее фокуса называется фокусным расстоянием. Плоскость, перпендикулярная оптической оси и проходящая через фокус линзы, называется фокальной плоскостью. Параллельный пучок лучей, наклоненный к оптической оси, собирается за линзой в одну точку ( на рис. 4) в фокальной плоскости линзы.

Рассеивающая линза преобразует параллельный оптической оси пучок лучей в расходящийся пучок (рис. 5). Если расходящиеся лучи продолжить назад, то они пересекутся в одной точке - фокусе рассеивающей линзы. При небольшом повороте пучка параллельных лучей точка пересечения перемещается по фокальной плоскости рассеивающей линзы.

Построение изображений.

В задачах на построение изображений подразумевается, что протяженный источник света состоит из некогерентных точечных источников. В этом случае изображение протяженного источника света состоит из изображений каждой точки источника, полученных независимо друг от друга.

Изображение точечного источника - это точка пересечения всех лучей после прохождения через систему, лучей испущенных точечным источником света. Точечный источник испускает сферическую световую волну. В приближении параксиальной оптики сферическая волна, проходя через линзу (рис. 6), распространяется и далее в виде сферической волны, но с другим значением радиуса кривизны. Лучи за линзой либо сходятся в одну точку (рис. 6а), которую называют действительным изображением источника (точка ), либо расходятся (рис. 6б). В последнем случае продолжения лучей назад пересекаются в некоторой точке , которая называется мнимым изображением источника света.

В параксиальном приближении все лучи, исходящие из одной точки до линзы, после линзы пересекаются в одной точке, поэтому для построения изображения точечного источника достаточно найти точку пересечения "удобных нам" двух лучей, эта точка и будет изображением.

Если перпендикулярно оптической оси поставить лист бумаги (экран) так, чтобы изображение точечного источника попало на экран, то в случае действительного изображения на экране будет видна светящаяся точка, а в случае мнимого изображения - нет.

Построение изображения в тонкой линзе.

Есть три луча, удобных для построения изображения точечного источника света в тонкой линзе.

Первый луч проходит через центр линзы. После линзы он не изменяет своего направления (рис. 7) как для собирающей так и для рассеивающей линзы. Это справедливо только в том случае, если среда с обеих сторон линзы имеет одинаковый показатель преломления . Два других удобных луча рассмотрим на примере собирающей линзы. Один из них проходит через передний фокус (рис. 8а), или его продолжение назад проходит через передний фокус (рис. 8б). После линзы такой луч пойдет параллельно оптической оси. Другой луч проходит до линзы параллельно оптической оси, а после линзы через задний фокус (рис. 8в).

Удобные для построения изображения лучи в случае рассеивающей линзы показаны на рис. 9а,9б.

Точка пересечения, мнимого или действительного, любой пары из этих трех лучей, прошедших линзу, совпадает с изображением источника.

В задачах по оптике иногда возникает потребность найти ход луча не для одного из удобных нам трех лучей, а для произвольного луча (1 на рис. 10), направление которого до линзы определено условиями задачи.

В таком случае полезно рассмотреть, например, параллельный ему луч (2 на рис. 10б), проходящий через центр линзы, независимо от того есть или нет такой луч на самом деле.

Параллельные лучи собираются за линзой в фокальной плоскости. Эту точку ( на рис. 10б) можно найти как точку пересечения фокальной плоскости и вспомогательного луча 2, проходящего линзу без изменения направления. Вторая точка, необходимая и достаточная для построения хода луча 1 после линзы, это точка на тонкой линзе ( на рис. 10б), в которую упирается луч 1 с той стороны, где его направление известно.

Построение изображения в толстой линзе.

Тонкая линза - линза, толщина которой много меньше ее фокусного расстояния . Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу.

Тогда изображение в толстой линзе можно найти как изображение изображения. Первая сферическая поверхность толстой линзы дает изображение источника как изображение в тонкой линзе. Вторая сферическая поверхность дает изображение этого изображения.

Другой подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы.

Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления .

Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после линзы, либо точку пересечения продолжений лучей назад (для мнимого изображения).

Построение хода лучей проводится так, как будто между главными плоскостями системы находится тонкая линза, а пространство между главными плоскостями отсутствует. Пример построения приведен на рис. 11. и - главные плоскости системы.

Задача прохождения света через центрированную оптическую систему может быть решена не только геометрическим построением хода лучей, но и аналитически. Для аналитического решения задач удобен матричный метод .

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.

Фокусы линзы. В гл. IX был сформулирован закон преломления света, устанавливающий, как меняется направление светового луча при переходе света из одной среды в другую. Был рассмотрен простейший случай преломления света на плоской границе раздела двух сред.

В практических применениях очень большое значение имеет преломление света на сферической границе раздела. Основная деталь оптических приборов - линза - представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса.

Линзы могут быть изготовлены не только из стекла, но, вообще говоря, из любого прозрачного вещества. В некоторых приборах, например, применяются линзы из кварца, каменной соли и др. Заметим, что и поверхности линз могут быть также более сложной формы, например цилиндрические, параболические и т. д. Однако такие линзы применяются сравнительно редко. В дальнейшем мы ограничимся рассмотрением линз со сферическими поверхностями.

Рис. 193. Тонкая линза: - оптический центр, и - центры ограничивающих линзу сферических поверхностей

Итак, рассмотрим линзу, ограниченную двумя сферическими преломляющими поверхностями и (рис. 193). Центр первой преломляющей поверхности лежит в точке центр второй поверхности - в точке . На рис. 193 для ясности изображена линза, имеющая заметную толщину . В действительности мы будем обычно предполагать, что рассматриваемые линзы очень тонки, т. е. расстояние очень мало по сравнению с или . В таком случае точки и можно считать практически сливающимися в одной точке . Эта точка называется оптическим центром линзы.

Всякая прямая, проходящая через оптический центр, называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы, называется главной оптической осью, остальные - побочными осями.

Луч, идущий по какой-либо из оптических осей, проходя через линзу, практически не меняет своего направления. Действительно, для лучей, идущих вдоль оптической оси, участки обеих поверхностей линзы можно считать параллельными, а толщину линзы мы считаем весьма малой. При прохождении же через плоскопараллельную пластинку, как мы знаем, световой луч претерпевает параллельное смещение, но смещением луча в очень тонкой пластинке можно пренебречь (см. упражнение 26 после гл. IX).

Если на линзу падает световой луч не вдоль одной из ее оптических осей, а по какому-либо другому направлению, то он, испытав преломление сначала на первой ограничивающей линзу поверхности, потом на второй, отклонится от первоначального направления.

Прикроем линзу черной бумагой 1 с вырезом, оставляющим открытым небольшой участок около главной оптической оси (рис. 194). Размеры выреза мы предполагаем малыми по сравнению с и . Пустим на линзу 2 вдоль главной оптической оси ее слева направо параллельный пучок света. Лучи, идущие сквозь открытую часть линзы, преломится и пройдут через некоторую точку , лежащую на главной оптической оси, справа от линзы на расстоянии от оптического центра . Если в точке расположить белый экран 3, то место пересечения лучей изобразится в виде яркого пятнышка. Эта точка на главной оптической оси, где пересекаются после преломления в линзе лучи, параллельные главной оптической оси, называется главным фокусом, а расстояние - фокусным расстоянием линзы.

Рис. 194. Главный фокус линзы

Нетрудно показать, пользуясь законами преломления, что все лучи, параллельные главной оптической осп и проходящие через небольшую центральную часть линзы, после преломления действительно пересекутся в одной точке, названной выше главным фокусом.

Рассмотрим луч , падающий на линзу параллельно ее главной оптической оси. Пусть этот луч встречает первую преломляющую поверхность линзы в точке на высоте над осью, причем гораздо меньше, чем и (рис. 195). Преломленный луч пойдет по направлению и, преломившись снова на второй ограничивающей линзу поверхности, выйдет из линзы по направлению , составляющему с осью угол . Точку пересечения этого луча с осью обозначим через , а расстояние от этой точки до оптического центра линзы - через .

Проведем через точки и плоскости, касательные к преломляющим поверхностям линзы. Эти касательные плоскости (перпендикулярные к плоскости чертежа) пересекутся под некоторым углом , причем угол весьма мал, так как рассматриваемая нами линза - тонкая. Вместо преломления луча в линзе мы, очевидно, можем рассматривать преломление того же луча в тонкой призме , образованной проведенными нами в точках и касательными плоскостями.

Рис. 195. Преломление в линзе луча , параллельного главной оптической оси. (Толщина линзы и высота к изображены преувеличенными по сравнению с расстояниями , и в соответствии с этим в углы и на рисунке чрезмерно велики.)

Мы видели в § 86, что при преломлении в тонкой призме с преломляющим углом луч отклоняется от первоначального направления на угол, равный

где есть показатель преломления вещества, из которого сделана призма. Очевидно, угол равен углу (рис. 195), т. е.

. (88.2)

Пусть и - центры сферических преломляющих поверхностей линзы, а и - соответственно радиусы этих поверхностей. Радиус перпендикулярен к касательной плоскости, а радиус - к касательной плоскости . По известной теореме геометрии угол между этими перпендикулярами, который мы обозначим , равен углу между плоскостями:

С другой стороны, угол , как внешний угол в треугольнике , равен сумме углов и образуемых радиусами и с осью:

Таким образом, с помощью формул (88.2) - (88.4) находим

(88.5)

Мы предположили, что мала по сравнению с радиусами сферических поверхностей и и с расстоянием точки от оптического центра линзы. Поэтому углы г и также малы, и мы можем заменить синусы этих углов самими углами. Далее, благодаря тому, что линза тонкая, мы можем пренебречь ее толщиной, считая ; , а также пренебречь разницей в высоте точек и , считая, что они расположены на одной и той же высоте к над осью. Таким образом, мы можем приближенно считать, что

Подставляя эти равенства в формулу (88.5), найдем

, (88.7) от оптического центра линзы.

Таким образом, доказано, что линза имеет главный фокус, и формула (88.9) показывает, как фокусное расстояние зависит от показателя преломления вещества, из которого сделана линза, и от радиусов кривизны ее преломляющих поверхностей.

Мы предполагали, что параллельный пучок лучей падает на линзу слева направо. Существо дела не изменится, конечно, если на линзу направить такой же пучок лучей, идущих в обратном направлении, т. е. справа налево. Этот пучок лучей, параллельных главной оси, соберется снова в одной точке - втором фокусе линзы (рис. 196) на расстоянии от ее оптического центра. На основании формулы (88.9) заключаем, что , т. е. оба фокуса лежат симметрично по обе стороны линзы.

Фокус называется обычно передним фокусом, фокус - задним фокусом; соответственно этому расстояние называется передним фокусным расстоянием, расстояние - задним фокусным расстоянием.

Рис. 196. Фокусы линзы

Если в фокусе линзы поместить точечный источник света, то каждый из лучей, выйдя из этой точки и преломившись в линзе, пойдет далее параллельно главной оптической оси линзы, в согласии с законом обратимости световых лучей (см. § 82). Таким образом, из линзы выйдет в этом случае пучок лучей, параллельных главной оси.

При практическом применении полученных нами соотношений необходимо всегда помнить о сделанных при выводе их упрощающих предположениях. Мы считали, что параллельные лучи падают на линзу на очень малом расстоянии от оси. Это условие не выполняется вполне строго. Поэтому после преломления в линзе точки пересечения лучей не будут строго совпадать между собой, а займут некоторый конечный объем. Если мы поставим в этом месте экран, то получим на нем не геометрическую точку, а всегда более или менее расплывчатое светлое пятнышко.

Другое обстоятельство, которое нужно помнить, состоит в том, что мы не можем осуществить строго точечный источник света. Поэтому, поместив в фокусе линзы источник хотя бы очень малых, но всегда конечных размеров, мы не получим с помощью линзы строго параллельный пучок лучей.

В § 70 были указано, что строго параллельный пучок лучей не имеет физического смысла. Сделанные замечание показывает, что рассмотренные свойства линзы находятся в согласии с этим общим физическим положением.

В каждом отдельном случае применения линзы к определенному источнику света для получения параллельного пучка лучей или, наоборот, при применении линзы для фокусировки параллельного пучка надо специально проверять степень отступления от тех упрощающих условий, при которых выведены формулы. Но существенные черты явления преломления световых лучей в линзе эти формулы передают правильно, а об отступлениях от них речь будет идти позже.

1) Изображение может быть мнимое или действительное . Если изображение образовано самими лучами (т.е. в данную точку поступает световая энергия), то оно действительное, если же не самими лучами, а их продолжениями, то говорят, что изображение мнимое (световая энергия не поступает в данную точку).

2) Если верх и низ изображения ориентированы аналогично самому предмету, то изображение называется прямым . Если же изображение перевернуто, то его называют обратным (перевернутым) .

3) Изображение характеризуется приобретаемыми размерами: увеличенное, уменьшенное, равное.

Изображение в плоском зеркале

Изображение в плоском зеркале является мнимым, прямым, равным по размерам предмету, находится на таком же расстоянии за зеркалом, на каком предмет расположен перед зеркалом.

Линзы

Линза представляет собой прозрачное тело, ограниченное с двух сторон криволинейными поверхностями.

Различают шесть типов линз.

Собирающие: 1 - двояковыпуклая, 2 - плоско-выпуклая, 3 - выпукло-вогнутая. Рассеивающие: 4 - двояковогнутая; 5 - плосковогнутая; 6 - вогнуто-выпуклая.

Собирающая линза

Рассеивающая линза

Характеристики линз.

NN - главная оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу;

O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре);

F - главный фокус линзы - точка, в которую собирается пучок света, распространяющийся параллельно главной оптической оси;

OF - фокусное расстояние;

N"N" - побочная ось линзы;

F" - побочный фокус;

Фокальная плоскость - плоскость, проходящая через главный фокус перпендикулярно главной оптической оси.

Ход лучей в линзе.

Луч, идущий через оптический центр линзы (О), не испытывает преломления.

Луч, параллельный главной оптической оси, после преломления проходит через главный фокус (F).

Луч, проходящий через главный фокус (F), после преломления идет параллельно главной оптической оси.

Луч, идущий параллельно побочной оптической оси (N"N"), проходит через побочный фокус (F").

Формула линзы.

При использовании формулы линзы следует верно использовать правило знаков: +F - линза собирающая; -F - линза рассеивающая; +d - предмет действительный; -d - предмет мнимый; +f - изображение предмета действительное; -f - изображение предмета мнимое.

Величина, обратная фокусному расстоянию линзы, называется оптической силой .

Поперечное увеличение - отношение линейного размера изображения к линейному размеру предмета.


Современные оптические устройства используют системы линз для улучшения качества изображений. Оптическая сила системы линз, сложенных вместе, равна сумме их оптических сил.

1 - роговица; 2 - радужная оболочка; 3 - белочная оболочка (склера); 4 - сосудистая оболочка; 5 - пигментный слой; 6 - желтое пятно; 7 - зрительный нерв; 8 - сетчатка; 9 - мышца; 10 - связки хрусталика; 11 - хрусталик; 12 - зрачок.

Хрусталик является линзоподобным телом и осуществляет настройку нашего зрения на различные расстояния. В оптической системе глаза фокусировка изображения на сетчатку называется аккомодацией . У человека аккомодация происходит за счет увеличения выпуклости хрусталика, осуществляемого с помощью мышц. При этом изменяется оптическая сила глаза.

Изображение предмета, попадающее на сетчатку глаза, является действительным, уменьшенным, перевернутым.

Расстояние наилучшего зрения должно быть около 25 см, а предел зрения (дальняя точка) находится на бесконечности.

Близорукость (миопия) - дефект зрения, при котором глаз видит расплывчато, а изображение фокусируется перед сетчаткой.

Дальнозоркость (гиперопия) - дефект зрения, при котором изображение фокусируется за сетчаткой.

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .


Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :


Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).


Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.


Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.


Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.


Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .


Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.


Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).