Физиология иммунной системы. Иммунная система Органы и системы

ФИЗИОЛОГИЯ ИММУННОЙ СИСТЕМЫ

Подготовил к.б.н., доцент кафедры общеобразовательных дисциплин Хакасского филиала

ФГОУ ВПО «Красноярский государственный аграрный университет» Степанов Ю.М. 1

1. СТРУКТУРА ИММУННОЙ СИСТЕМЫ 1

1.1. ЦЕНТРАЛЬНЫЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ 1

1.2. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ 2

1.3. КЛЕТКИ ИММУННОЙ СИСТЕМЫ 5

2. ИНДУКЦИЯ И РЕГУЛЯЦИЯ ИММУННОГО ОТВЕТА 8

2.1. АНТИГЕНЫ 8

2.2. АКТИВАЦИЯ ЛИМФОЦИТОВ 10

^ 2.3. ИММУННЫЙ ОТВЕТ ГУМОРАЛЬНОГО ТИПА 13

2.4. АНТИТЕЛА 16

2.5. ИММУННЫЙ ОТВЕТ КЛЕТОЧНОГО ТИПА 21

3. ФАКТОРЫ ЕСТЕСТВЕННОЙ РЕЗИСТЕНТНОСТИ 25

3.1. ЕСТЕСТВЕННЫЕ БАРЬЕРЫ 26

^ 3.2. СИСТЕМА ФАГОЦИТОВ 26

3.3. СИСТЕМА КОМПЛЕМЕНТА, ПРОПЕРДИН 29

3.4. ЛИЗОЦИМ 34

3.5. ИНТЕРФЕРОНЫ 35

3.6. ВЗАИМОДЕЙСТВИЕ АНТИГЕН-АНТИТЕЛО 35

Введение

Иммунология признана как наука в 1881г., когда Луи Пастер сделал доклад во французской академии о возможности использования ослаб­ленных штаммов микроорганизмов для создания искусственного иммунитета. В настоящее иммунология должна применяться в практической ветеринарии, поскольку фактически нет заболеваний, в патогенезе которых не были бы затронуты ме­ханизмы иммунитета.

Наиболее распространено следующее определение: и ммунная система - функциональная система организма по­звоночных, состоящая из лимфоидных клеток и органов, ответствен­ ных за специфические защитные механизмы.

В настоящее время иммунная система рассматривается как система контроля, обеспечивающая индивидуальность и целост­ность организма. Основные функции иммунной системы – отличать генетичес­ки чужеродные структуры от собственных, перерабатывать и эли­минировать их. Иммунная система обеспечивает защиту организ­ма от инфекций, а также удаление поврежденных, состарившихся и измененных клеток собственного организма.
^

1. СТРУКТУРА ИММУННОЙ СИСТЕМЫ

1.1. ЦЕНТРАЛЬНЫЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ


Центральный орган иммунной системы – вилочковая железа (тимус). Она состоит из множества мелких долек, в которых различают корковый и мозговой слои. Корковый слой заполнен лимфоцитами, на которые воздействуют «тимические факторы», выделяемые эпителиальными клетками этого слоя (факторы, играющие важную роль в дифференцировке Т-лимфоцитов). Лимфоциты коркового слоя различны по размеру. Большие лимфоциты находятся преимущественно во внешней зоне коры, где они продолжают пролиферировать. Во внутренней зоне коры сосредоточено множество малых лимфоцитов, несущих Т-клеточные антигены. Большая часть из них погибает еще в вилочковой железе.

В мозговом слое содержится меньшее количество, но уже зре­лых Т-лимфоцитов, покидающих вилочковую железу и включаю­щихся в циркуляцию. В вилочковой железе существует барьер между циркулирующей кровью и корковым слоем, аналогичный гематоэнцефалическому барьеру, вследствие чего в контакт с ан­тигеном вступают только клетки мозгового слоя.

Закладка тимуса происходит в период внутриутробного разви­тия. Первый идентифицированный лимфоидный орган - тимус - появляется у плодов на 42-е сутки развития. Дифференцировка тимуса происходит также в плодный период, и он приобретает выраженное дольчатое строение, под­разделяясь на зоны: в корковой зоне содержатся тимоциты, в моз­говой зоне - эпителиальные структуры (тельца Гассаля).

Сумка Фабрициуса у птиц также относится к центральным органам иммунной системы. В ней формируются В-лимфоциты аналогично тому, как в вилочковой железе созревают Т-лимфоциты. У млекопитающих и человека, органом, в котором происходит диффе­ренцировка В-лимфоцитов, является костный мозг.

Костный мозг, не являясь непосредственно лимфоидным орга­ном, принадлежит к органной иммунной системе. С одной сторо­ны, он поставляет все клетки-предшественники для различных популяций лимфоцитов и макрофагов, а с другой - в костном мозге протекают специфические иммунные реакции, связанные, например, с синтезом антител. Этот процесс происходит следую­щим образом. Через несколько дней после начала вторичного иммунного ответа обнаруживается миграция активированных В-клеток памяти в костный мозг, где они и созревают в плазматические клетки. Костный мозг служит основным источ­ником сывороточных иммуноглобулинов. Костный мозг в отличие от периферической лимфоидной ткани на антиген реагирует мед­ленно, однако ответ более продолжительный и сопровождается более эффективной продукцией антител при последующем кон­такте с антигеном. Лимфоциты составляют примерно около 20 % всех клеток костного мозга.
^

1.2. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ ИММУННОЙ СИСТЕМЫ


Селезенка заселяется лимфоцитами в поздний эмбриональный период и сразу после рождения. Структурно выраженная селезен­ка выявлена у плодов крупного рогатого скота 55-суточного воз­раста, а дифференцирование красной и белой пульпы происходит между 80-ми и 100-ми сутками.

Между 70-ми и 100-ми сутками происходит диф­ференциация на красную и белую пульпу. Ретикулярные клетки содержат вакуоли и эндоплазматический ретикулум. Лимфоциты накапливаются в периваскулярных пространствах и являются предшественниками белой пульпы селезенки. В белой пульпе различают тимусзависимые и тимуснезависимые зоны, ко­торые заселяются соответственно Т- и В-лимфоцитами. Т-клетки располагаются преимущественно в периартериальных областях, а В-клетки - в лимфоидных муфтах и фолликулах. Антигены с то­ком крови достигают селезенки, фиксируются в дендритных клет­ках и в маргинальной зоне, откуда они транспортируются в белую пульпу и расположенные в ней центры размножения. Эти антиге­ны индуцируют образование лимфобластов в тимусзависимой зоне селезенки, а в тимуснезависимой зоне происходит пролиферация лимфоцитов и образование плазматических клеток.

Селезенка осуществляет контроль за цитологическим составом крови, удаляя из кровотока утратившие функциональную актив­ность эритроциты и лейкоциты, а также образует новые лимфоци­ты в ответ на занесенные кровотоком чужеродные антигены, осо­бенно корпускулярные.

^ Лимфатические узлы относятся к периферическим органам им­мунной системы. Они состоят из заключенной в капсулу паренхимы, содержащей ретикулярную строму и большое число подвижных клеток: лимфоцитов, плазматических клеток и макрофагов.

У крупного рогатого скота в эмбриональный период надвыменый лимфатический узел и узел коленной складки представлен небольшими узелками, окруженными студенистой плотной массой. Постепенно они приобретают рыхлую, а затем упругую консистенцию и ко времени рождения формируются полностью. В них содержатся фолликулы, лимфоциты и миелоциты. У эмбрионов коз поверхностные региональные лимфатические узлы закладываются также в форме прозрачных студенистых пузырьков в первой половине суягности; к 75-м суткам развития они морфологически оформляются. У 120-суточных плодов уже развита капсула, различаются трабекулы и фолликулы некоторых узлов. Периферические и глубокие лимфатические узлы у плодов свиней представляют собой систему синусов, покрытых плоскими клетками; на 51-е сутки развития доминируют гисторетикулярные клетки; разбросанныелимфоциты обнаруживаются на 64-е сутки развития. Ретикулярные клетки лимфатических узлов образуют синусы, фильтрующие лимфу, которая дренирует ткани организма и может содержать чужеродные антигены. В лимфатическом узле также различают мозговой и корковый слои. Корковый слой густо заселен лимфоцитами. В коре, в свою очередь, также выделяют внешнюю и внутреннюю зоны. Лимфоидные фолликулы и зародышевые центры имеются только во внешней коре и содержат большое количество делящихся лимфоидных клеток, лимфобластов и средних лимфоцитов (в том числе одиночных Т-лимфоцитов) и плазматических клеток. Тимусзависимой зоной лимфатического узла является внутренняя зона.

В зависимости от вида антигенного воздействия изменения мо­гут возникнуть в различных зонах лимфатического узла. При реак­ции клеточного типа во внутренней (паракортикальной) зоне лимфатического узла уже в течение суток можно обнаружить бластные клетки, а пролиферация Т-клеток продолжается несколько суток. Если же антигены вызывают иммунную реакцию гуморального типа, то морфологически значимые изменения происходят во внешней (тимусзависимой) области коры. Тогда антиген, на­капливаясь на ретикулярных клетках лимфоидного фолликула, индуцирует пролиферацию в зародышевых центрах, и через не­сколько суток начинается миграция плазматических клеток из корковой зоны в мозговую.

Лимфоциты поступают в лимфатический узел по афферентным лимфатическим сосудам, проникая через стенки посткапилляр­ных венул с так называемым высоким эндотелием. На эндотелиальных клетках, выстилающих эти венулы, располагаются специ­альные рецепторы, направляющие соответствующую популяцию лимфоцитов в лимфатический узел. Перемещение лимфоцитов между тканями, кровеносным руслом и лимфатическими узлами позволяет антигенчувствительным клеткам обнаружить антиген и скапливаться в местах протекания иммунной реакции, а распро­странение по организму клеток памяти и их потомков позволяет лимфоидной системе организовать генерализованный иммунный ответ. Уже через 24 часа после того как антиген оказывается в лим­фатическом узле или селезенке, реагирующие на него клетки из циркулирующего пула лимфоцитов скапливаются в месте локали­зации антигена, интенсивно пролиферируют, из лимфатическо­го узла через 3 суток выходят активированные бластные клетки.

К периферическим органам иммунной системы также относят­ся лимфоидная ткань пищеварительного тракта (миндалины глот­ки, пейеровы бляшки и солитарные фолликулы кишечника) и лимфоидная ткань органов дыхания (гортань, трахея, бронхи, лег­кие). Как известно, органы дыхания и пищеварительный тракт служат главными «входными воротами» для антигенов, содержа­щиеся там многочисленные лимфатические фолликулы сходны по строению с таковыми селезенки и лимфатических узлов.

Тимус (thymus), или вилочковая железа, имеется у всех позвоночных животных. В эмбриогенезе закладывается раньше дру­гих лимфоидных органов. У новорожденного тимус уже полнос­тью развит, а его масса составляет 0,6% массы тела. Закладка тимуса происходит достаточно рано (например, у крупного рога­того скота на 25- 27 сутки) в виде трубчатых выпячиваний энто­дермы третьего-четвертого жаберных карманов головной кишки. Роль тимуса была убедительно показана при изучении заболева­ния, получившего название «синдром ДиДжорджи, при котором генетически детерминированное недоразвитие этого органа приводит к отсутствию одной из популяций лимфоцитов – Т-лимфоцитов. При таком врожденном иммунодефиците прояв­лялась повышенная чувствительность к вирусным, грибным и не­которым бактериальным инфекциям.

Максимального развития тимус достигает к концу подсосного периода (у телят 2-месячного возраста его масса 1050 г). Вместе с тем объективные данные свидетельствуют об очень быстрой его возрастной инволюции, т. е. об утрате тимуса с возрастом. В тече­ние первых лет жизни ежегодно теряется по 3% истинно тимической ткани, которая постепенно замещается жировой и соединительной тканями. Соответственно снижается и продукция Т-лимфоцитов. Самая высокая продукция Т-лимфоцитов у приматов, например, сохраняется до двух лет, а затем быстро падает. У мыши к 24-месячному возрасту продукция Т-клеток составляет 0,7% уровня их продукции у новорожденной мыши, т.е. происходит почти полная редукция тимуса: теряется и структура, и его функ­ция. Однако следует отметить, что количество Т-лимфоцитов в циркуляции сохраняется на достигнутом уровне. Дело в том, что значительную часть популяции Т-лимфоцитов составляют долгоживущие клетки, которые не нуждаются в постоянном об­новлении, и поэтому численность Т-клеток поддерживается во взрослом организме и при отсутствии тимуса. Более того, зрелые Т-лимфоциты подвергаются так называемой клональной экспан­сии, т. е. избирательной пролиферации в ответ на встречу со сво­им антигеном, за счет чего их численность возрастает. После со­здания пула периферических Т-лимфоцитов утрата тимуса уже не приводит к катастрофическому снижению иммунитета. В пользу этого говорят результаты иммунологического обследования мы­шей, перенесших тимэктомию.

Из всех органов иммунной системы только для тимуса харак­терна возрастная инволюция. Костный мозг не претерпевает по­добных возрастных изменений, если не считать накопления жи­ровых отложений. Не подвержены возрастной инволюции ни се­лезенка, ни лимфатические узлы. С возрастом дифференцировка гранулоцитов и моноцитов даже усиливается, повышается коли­чество естественных киллеров – больших гранулярных лимфо­цитов вне зависимости от тимуса. Можно заключить, что в орга­низме сохраняется воспроизводство всех остальных иммуноком-петентных клеток, которые не являются долгоживущими, выпол­няют функции эффекторов и тратятся постоянно в борьбе с бо­лезнетворными микроорганизмами. В отличие от этого необхо­димость в генерации новых Т-лимфоцитов снижается с возрас­том. Первичные контакты с инфекционными агентами проис­ходят в основном в первые годы жизни, когда и формируются Т-клетки памяти. Т-лимфоциты памяти у людей живут более 20 лет. В дальнейшем возможность поступления новых патогенов снижается и содержание организмом целого тимуса с его энерге­тической емкостью становится нецелесообразным. Тимус под­вергается инволюции к тому периоду жизни, когда этот орган становится ненужным, так как остаются долгоживущие Т-клетки памяти. При наличии такого клона организму нестрашна встреча с болезнетворным асептом: тут же распознаются «запомнившие­ся» антигены, вырабатываются сигналы клональной экспансии (пролиферации), активации и клетки начнут выполнять свои защитные функции, что ведет к элиминации возбудителя и нейтра­лизации его токсинов.

При отсутствии тимуса его функции могут частично выпол­нять участки лимфоидных тканей, где созревают Т-лимфоциты. Наиболее ярким примером механизма компенсации функций отсутствующих Т-лимфоцитов могут служить так называемые голые (nude) мыши. У таких мышей имеется сочетание двух ге­нетических дефектов: дефекта эпителия кожи, ведущего к от­сутствию волосяного покрова, и недоразвития тимуса, ведущего к отсутствию Т-лимфоцитов. У них компенсаторно повышено количество естественных киллеров, которые способны проду­цировать и секретировать один из важнейших защитных цитокинов – гамма-интерферон. При наличии в организме Т-лим­фоциты являются основными продуцентами гамма-интерферо­на, но при их отсутствии эту важную защитную функцию берут на себя другие клетки - естественные киллеры, развитие кото­рых протекает без участия тимуса.

Костный мозг дает начало всем росткам кроветворе­ния: из единой стволовой полипотентной клетки костного мозга происходят эритроциты, тромбоциты, гранулоциты, моноциты и лимфоциты. Из стволовых клеток костного мозга путем различ­ных превращений образуются Т- и В-лимфоциты. Превращение стволовой клетки в В-лимфоцит происходит, по-видимому, также в костном мозге. Красный костный мозг первоначально занимает и трубчатые, и плоские кости, но в процессе развития организма детеныша он замещается желтым костным мозгом, причем пол­ностью этот процесс завершается к моменту полового созревания. После этого момента красный костный мозг остается только в плоских костях.

Селезенка впервые как самостоятельный орган появляет­ся у рыб. В эмбриогенезе развивается из мезенхимы в дорсальной части брыжейки. Вначале в ней происходит образование эритроци­тов и гранулоцитов. Позднее из центральных органов кровообра­зования в селезенку вселяются лимфоциты. У новорожденных масса селезенки составляет (у крупного рогатого скота) около 0,15...0,19% массы тела. Селезенка участвует в защите организма, а в связи с тем, что она состоит из ретикулярной и лимфоидной тканей, выполняет функции кроветворения. В организме созданы благоприятные условия для компенсации функции селезенки за счет других отделов ретикулоэндотелиальной системы в случае спленэктомии. Ее деятельность в филогенезе претерпевает опре­деленные изменения. У птиц селезенка выполняет только функ­цию кроветворения (продукция лимфоцитов и моноцитов). У млекопитающих кроме кроветворения селезенка участвует в им­мунологических реакциях организма за счет того, что эндотелиальные клетки способны захватывать чужеродные частицы и электроотрицательные коллоиды.

Лекция 11.
Физиология иммунной системы

Морфофункциональная характеристика иммунной системы. Иммунный ответ, его типы и механизм. Антитела, их взаимодействие с антигеном . Иммунологическая реактивность и неспецифическая резистентность. Использование достижений иммунологии в животноводстве.

1. Морфофункциональная характеристика иммунной системы.

n Иммунная система (от лат. immunitas - освобождаться от чего-либо) - это система органов и клеток, деятельность которых обеспечивает иммунитет это способность организма защищаться от генетически чужеродных веществ, сохранять свой генетический гомеостаз (биологическую индивидуальность).

n Чужеродные вещества могут поступать из внешней среды (бактерии, вирусы , простейшие, токсины, белки) и из внутренней (собственные клетки с искаженной генетической информацией).

n Морфологически иммунная система представляет собой совокупность всех лимфоидных органов и скоплений лимфоидных клеток тела, коммуникация между которыми осуществляется через кровоток и лимфоток. Главной клеточной формой иммунной системы является лимфоцит.

n Лимфоидные органы:

n 1. Центральные (первичные ) - тимус (вилочковая железа), фабрициева бурса (у птиц) и костный мозг; в них образуются исходные стволовые клетки, осуществляется пролиферация и первичная дифференцировка иммунокомпетентных (ответственных за иммунитет) клеток - лимфоцитов.

n 2. Периферические (вторичные ) - лимфатические узлы, миндалины, селезенка, пейеровы бляшки тонкого кишечника, фолликулы аппендикса , лимфоэпителиальные образования в слизистой желудочно-кишечного тракта, дыхательных и мочеполовых путей; в них происходит созревание лимфоцитов, их пролиферация в ответ на антигенную стимуляцию.

n Первичные лимфоидные органы .

n В красном костном мозгу и печени (у плодов) находятся стволовые клетки, дающие начало всем типам клеток крови. Часть стволовых клеток, запрограммированных как лимфоцитарные, мигрируют с током крови в тимус, где размножаются и дифференцируются в лимфоциты - Т-лимфоциты, или тимусзависимые.

n Другие поселяются и дифференцируется в фабрициевой бурсе птиц - дивертикуле клоаки - В-лимфоциты, или бурсозависимые . У млекопитающих эту функцию выполняет сама кроветворная ткань костного мозга или лимфатические пейеровы бляшки, расположенные в стенке тонкого кишечника. С наступлением половой зрелости тимус и фабрициева бурса уменьшаются в размерах и затем подвергаются инволюции.

n Вторичные лимфоидные органы.

n Часть лимфоцитов из тимуса и фабрициевой бурсы переносится (еще в эмбриональный период) в периферические лимфоидные органы. В лимфатических фолликулах этих образовании различают тимусзависимые зоны - где селятся Т-лимфоциты и тимуснезависимые зоны - В-лимфоциты.

n Пр., в лимфатических узлах тимуснезависимой зоной является кортикальный слой, а паракортикальный слой, прилегающий к медуллярным синусам, составляет тимусзависимый слой. Однако резкой границы между зонами нет, поскольку иммунный ответ требует, как правило, взаимодействия между Т - и В-лимфоцитами.

n В селезенке, выполняющей роль фильтра для крови, обе зоны находятся в белой пульпе. Вдоль артерий расположена тимусзависимая зона, кнаружи от нее - тимуснезависимая зона

2. Иммунный ответ, его типы и механизм.

n Иммунный ответ - это реакция организма на внедрение чуждых ему макромолекул.

n Вещество, способное вызвать специфический иммунный ответ, называется антигеном.

n Иммуногенность антигена - способность вызывать иммунный ответ. Зависит от его чужеродности, молекулярной массы (молекулы массой менее 5000 обычно не иммуногенны), структурной гетерогенности, устойчивости к разрушению ферментами, вида животных.

n Антигены могут быть животного, растительного и микробного происхождения.

n Пр., антигены гистосовместимости - распознающие и устраняющие аномальные клетки организма или трасплантированных тканей; аллергены (пыльца, чешуйки кожи, волосы, перья и др.); групповые антигены крови.

n Типы иммунного ответа:

n 1. Гуморальный - выработка антител , циркулирующих в крови и специфически связывающихся с чужеродными молекулами, ответственны В-лимфоциты

n 2. Клеточный - образование специализированных клеток, реагирующих с антигеном посредством его связывания и последующего разрушения. В основном против клеточных антигенов - бактерий, патогенных грибов, чужеродных клеток и тканей (пересаженных или опухолевых), ответственны Т-лимфоциты.

n Механизм иммунного ответа .

n 5. IgD (0,1%) - являются рецепторами для антигена на некоторых В-лимфоцитах.

n Антитела способствуют уничтожению чужеродных тел с помощью трех механизмов :

n 1. Усиления фагоцитоза (путем связывания с рецепторами макрофагов и нейтрофилов),

n 2. Активации системы комплемента - белкового комплекса сыворотки, участвующего в реакции антиген-антитело и вызывающего лизис клеток,

n 3. Стимуляции функции К-клеток (лимфоцитов без Т - или В-маркеров, обладающих цитотоксическим действием).

n Кроме того, антитела могут присоединяться к вирусам или бактериальным токсинам и предотвращать их связывание с рецепторами на клетках-мишенях.

В крови сельскохозяйственных животных (крупного рогатого скота, свиней, овец, коз и лошадей) обнаружено 3 класса иммуноглобулинов: IgG, IgA, IgM, причем IgG имеет два подкласса (IgG1 и IgG2). В молозиве содержатся преимущественно IgG, в молоке - IgA и IgM.

n Комплементарные, т. е. взаимно соответствующие друг другу антигены и антитела, образуют иммунный комплекс антиген - антитело .

n Прочность таких структур определяется высокой избирательностью и большой площадью взаимодействия по принципу «ключ-замок», благодаря гидрофобным водородным электростатическим связям и силам Ван-дер-Ваальса. Антиген при этом соединяется своей антигенной детерминантой , антитело - своим активным центром.

n Антиген, как правило, больше по размерам, чем антитело, поэтому последнее может распознавать только отдельные участки антигена, которые называются детерминантами .

n Большинство антигенов имеет на поверхности много антигенных детерминант, которые стимулируют иммунный ответ.

n Антитела могут вступать в реакцию не только с гомологичным антигеном, но и с родственными ему гетерологичными антигенами.

n Пр., на этом принципе основана предохранительная противооспенная прививка, когда человеку прививают «безобидную» коровью оспу, родственную натуральной оспе.

n Реакции специфического взаимодействия антител с антигенами проявляются в следующих формах:

n 1. Агглютинация - склеивание антигенных частиц между собой;

n 2. Преципитация - агрегация частиц с образованием нерастворимых комплексов;

n 3. Лизис - растворение клеток под влиянием антител в присутствии комплемента;

n 4. Цитотоксичность - гибель клеток под влиянием антител - цитотоксинов;

n 5. Нейтрализация - обезвреживание токсинов белковой природы;

n 6. Опсонизация - усиление фагоцитарной активности нейтрофилов и макрофагов под влиянием антител или комплемента.

n Обычно иммунный ответ выявляется через несколько дней.

n 4. Иммунологическая реактивность и неспецифическая резистентность .

n Формы нормальной иммунологической реактивности :

n 1. Иммунитет - защита при помощи антител и сенсибилизированных Т-лимфоцитов;

n 2. Иммунологическая память - способность иммунной системы специфически отвечать на повторные или последующие введения антигена. Проявляется в виде ускоренного и усиленного ответа на антиген (уменьшение латентного периода, более резкое нарастание титра антител, ускоренное отторжение трансплантата, аллергические реакции). Может быть краткосрочной, долговременной и пожизненной. Ее основными носителями являются долгоживущие сенсибилизированные В-лимфоциты, образующиеся при кооперации их с лимфобластами. Эти клетки продолжают циркулировать в кровяном и лимфатическом русле, являясь специфическими предшественниками антигенреактивных лимфоцитов. При повторном контакте с антигеном они размножаются, обеспечивая быстрое увеличение специфических В - или Т-лимфоцитов.

n 3. Иммунологическая толерантность - негативная форма иммунологической памяти. Проявляется в отсутствии или ослаблении ответа на повторное введение антигена. Лежит в основе отсутствия реакции организма на собственные антигены. В ранний период развития иммунная система потенциально способна реагировать на них, но постепенно «отвыкает» от этого. Предположительно, это обусловлено выведением (элиминацией) В - и Т-клеток с рецепторами для антигенных детерминант собственного организма или активацией Т-супрессоров, подавляющих реакцию на собственные антигены.

n Пр., телки-близнецы, имевшие в антенатальный период общую плаценту (т. е. обмен клетками крови), при взаимных пересадках кожи не отторгают трансплантат, т. е. не признают его чужеродным. При наличии же у каждого из близнецов собственной плаценты кожные трансплантаты при аналогичных пересадках отторгаются.

n Патологическими формами реактивности являются антигенспецифическая гиперчувствительность, аутоиммунные процессы, отсутствие ответа или дефектный ответ вследствие врожденного иммунодефицита.

n Неспецифическая резистентность .

n Система неспецифической защиты, или неспецифической резистентности включает следующие компоненты: непроницаемость кожных и слизистых покровов; кислотность содержимого желудка; наличие в сыворотке крови и жидкостях организма бактерицидных субстанций - лизоцима, пропердина (комплекса сывороточного белка, ионов Мg++ и комплемента), а также ферментов и противовирусных веществ (интерферона, термоустойчивых ингибиторов). Активность факторов естественной резистентности неодинакова в разные периоды онтогенеза.

n Факторы неспецифической защиты первыми включаются в борьбу при поступлении в организм чужеродных антигенов. Подготавливают почву для дальнейшего развертывания иммунных реакций, которые определяют исход.

n Особое положение среди факторов защиты занимают фагоциты (макрофаги и полиморфноядерные лейкоциты) и система белков крови - комплемент. Их можно отнести как к неспецифическим, так и к иммунореактивным факторам защиты. Связывание антител с антигеном облегчает поглощение антигена фагоцитами и часто активирует систему комплемента, хотя выработка комплемента и явление фагоцитоза не являются сами по себе специфическими реакциями в ответ на введение антигена.

5. Использование достижений иммунологии в животноводстве.

n По времени проявления в онтогенезе различают иммунитет врожденный и приобретенный , а по способу возникновения - активный и пассивный .

n Приобретенный активный иммунитет возникает при переболевании животного или при его активной иммунизации (вакцинации).

n Вакцинация - парентеральное введении препарата из живых, ослабленных или убитых микроорганизмов. В ответ на это у животных образуется иммунитет гуморального или клеточного типа, специфичный по отношению к данному возбудителю.

n Массовая вакцинация проводится в обязательном порядке (против особо опасных инфекций), либо при угрожающей эпизоотологической ситуации.

n Метод генной инженерии позволяет получать синтетические вакцины против вирусных болезней животных, которые состоят из коротких полипептидов, соответствующих антигенным детерминантам вирусов. Такие вакцины свободны от балластного материала, эффективны и не обладают побочным действием .

n Пассивная иммунизация осуществляется путем введения животному специфических антибактериальных, антитоксических или антивирусных сывороток , содержащих готовые антитела . Продолжительность возникающего пассивного гуморального иммунитета обычно невелика, определяется периодом биологической полужизни антидн.).

n Пассивный колостральный иммунитет (от лат. colostrum - молозиво) у новорожденных возникает за счет иммуноглобулинов матери, передаваемых через молозиво. Новорожденные животные не обладают иммунитетом вследствие недоразвитости лимфоидной ткани и отсутствия иммунокомпетентных клеток. Плацентарный барьер не пропускает иммуноглобулины матери в кровь плода.

n Иммуноглобулины проходят, не разрушаясь, через стенку кишечника новорожденного, так как протеолитическая активность пищеварительных соков ингибируется специальным ферментом, содержащимся в молозиве. Интенсивность всасывания иммуноглобулинов резко снижается со временем.

n Так, у телят сразу после рождения абсорбируется 50% антител молозива, через 20 ч - 15%, через 36 ч - ничтожное количество (у ягнят - 24-40 ч). Наряду с этим снижается концентрация иммуноглобулинов в молозиве: через 3-5 ч после отела - в 1,5 раза, через 12 ч - в 3, через 3 сут. - в 5, через 5 сут. - в 10 раз. Поэтому возможно более ранняя (в первые часы) дача молозива и обильное его выпаивание в последующем позволяют значительно снизить отход молодняка .

n Колостральный иммунитет непродолжителен (10-14 дн.). Уровень иммунноглобулинов в крови постепенно снижается и лишь с 4-5-й нед. снова возрастает вследствие функционального созревания собственной лимфомиелоидной системы. Полноценный иммунный ответ, характерный для взрослых, формируется у поросят и телят примерно к 2-3 мес.

В результате изучения материала данной главы студент будет:

  • о значении иммунной системы для организма, о механизмах и органах иммунной защиты;
  • о возрастных морфофункциональных особенностях иммунных органов, об организации иммунного ответа в разные периоды онтогенеза, о факторах, влияющих на их состояние и развитие иммунитета в онтогенезе;
  • возможные пути организации профилактических мероприятий, направленных на укрепление иммунной защиты в детском и подростковом возрасте;
  • анализировать возрастные особенности иммунной защиты и обусловленные ими требования к уходу и воспитанию детей и подростков;
  • анализировать теоретические предпосылки методов повышения иммунной защиты для обоснованного использования их в практической деятельности;

владеть навыками

Культурно-просветительной работы по вопросам иммунной защиты в детском и подростковом возрасте.

Механизмы иммунной защиты организма

Иммунитет - это способность распознавать вторжение в организм чужеродных объектов и уничтожать или удалять эти объекты из организма.

В организме человека одновременно работают две иммунные системы, различающиеся своими возможностями и механизмом действия, - специфическая и неспецифическая. Специфические защитные механизмы отличаются тем, что они начинают действовать только после первичного контакта с антигеном , тогда как неснецифические обеззараживают даже те вещества, с которыми организм прежде не встречался. Однако специфическая иммунная система является наиболее мощной и эффективной.

Специфическая иммунная система. При проникновении в организм антигена клетки специфической иммунной системы начинают вырабатывать антитела и антитоксины, которые соединяются с антигенами и нейтрализуют их вредное влияние на организм. Антитела , или иммунные тела, представляют собой циркулирующие в крови белковые вещества

(иммуноглобулины), образующиеся в организме под действием попавших в него чужеродных тел (бактерий, вирусов, белковых частиц и др.), называемых антигенами. Антитоксины - это антитела, синтезирующиеся в организме при его отравлении токсинами (ядовитыми веществами, продуцируемыми патогенными микроорганизмами).

Основной структурной и функциональной единицей специфической иммунной системы является белая кровяная клетка - лимфоцит, который существует в виде двух независимых популяций (Т-лимфоциты и В-лимфоциты). Лимфоциты, как и другие клетки крови, образуются из стволовых клеток костного мозга. Из части стволовых клеток формируются непосредственно В-лимфоциты. Другая часть поступает в тимус (вилочковую железу), где они дифференцируются в Т-лимфоциты.

В специфической борьбе с чужеродными микроорганизмами участвуют и клетки (клеточный иммунитет), и антитела (гуморальный иммунитет).

Клеточный иммунитет. Т-лимфоциты, несущие на своих мембранах рецепторы соответствующих веществ, распознают иммуноген. Размножаясь, они образуют клон таких же Т-клеток и уничтожают микроорганизм или вызывают отторжение чужеродной ткани.

Гуморальный иммунитет. В-лимфоциты также распознают антиген, после чего синтезируют соответствующие антитела и выделяют их в кровь. Антитела связываются с антигенами на поверхности бактерий и ускоряют их захват фагоцитами либо нейтрализуют бактериальные токсины.

Становление механизмов специфического иммунитета связано с формированием лимфоидной системы, дифференцировкой Т- и В-лимфоцитов, которая начинается с 12-й недели внутриутробной жизни. У новорожденных содержание Т- и В-лимфоцитов в крови выше, чем у взрослого, но они менее активны, поэтому основную роль играют антитела, попадающие в кровь ребенка от матери через плаценту до рождения и поступающие с материнским молоком.

Собственная иммунная система начинает функционировать с началом развития микрофлоры в желудочно-кишечном тракте ребенка. Микробные антигены являются стимуляторами иммунной системы организма новорожденного. Примерно со 2-й недели жизни организм начинает выработку собственных антител. В первые 3-6 месяцев после рождения разрушается материнская и созревает собственная иммунная система. Низкое содержание иммуноглобулинов в течение первого года жизни объясняет легкую восприимчивость детей к различным заболеваниям. Только ко 2-му году организм ребенка обретает способность вырабатывать достаточное количество антител. Иммунная защита достигает максимума на 10-м году. В дальнейшем напряженность иммунитета держится на постоянном уровне и начинает снижаться после 40 лет.

Важнейшим свойством специфической иммунной системы является иммунологическая память. В результате первой встречи запрограммированного лимфоцита с определенным антигеном образуется два вида клеток. Одни из них сразу выполняют свою функцию - секретируют антитела, другие представляют собой клетки памяти, циркулирующие в крови длительное время. В случае повторного поступления этого же антигена клетки памяти быстро превращаются в лимфоциты, вступающие в реакцию с антигеном (рис. 10.1). При каждом делении лимфоцита количество клеток памяти возрастает.

Рис. 10.1.

(на графике видно, что организм, один раз уже боровшийся с инфекцией, во второй раз реагирует быстрее и более мощно)

Кроме того, после встречи с антигеном Т-лимфоциты активируются, увеличиваются и дифференцируются в одну из пяти субпопуляций, каждая из которых обусловливает определенный ответ. Т-киллеры (убийцы) при встрече с антигеном вызывают его гибель. Т-супрессоры подавляют иммунный ответ В-лимфоцитов и других Т-лимфоцитов на антигены. Для осуществления иммунного ответа В-лимфоцита на антиген необходима его кооперация с Т-хелпером (помощником). Но это взаимодействие возможно только при наличии макрофага - Е-клетки. При этом макрофаг передает антиген В-лимфоциту, который затем продуцирует плазматические клетки, уничтожающие чужеродный микроорганизм.

В-лимфоцит производит сотни плазматических клеток. Каждая такая клетка дает огромное количество антител, готовых уничтожить антиген. Антитела по своей природе являются иммуноглобулинами и обозначаются Ig. Иммуноглобулины бывают пяти видов: IgA, IgG, IgE, IgD и IgM. Около 15% всех антител - это IgG, которые вместе с IgM воздействуют на бактерии и вирусы. IgA защищают слизистые оболочки пищеварительной, дыхательной, мочеполовой систем. IgE ответственны за аллергические реакции. Увеличение количества IgM свидетельствует об остром заболевании, IgG - о хроническом процессе.

Кроме того, лимфоциты продуцируют лимфокины. Самый известный из них - интерферон, который образуется под действием вируса. Функцией интерферона является стимуляция неинфицированных клеток к выработке противовирусных белков. Интерферон активен против всех видов вирусов и способствует увеличению числа Т-лимфоцитов.

Активация лимфоцитов приводит также к синтезу клетками неспецифических биологически активных веществ, называемых цитокинами , или интерлейкинами. Эти вещества регулируют характер, глубину, продолжительность иммунного ответа и иммунного воспаления. Продолжительность жизни В-лимфоцитов составляет несколько недель, Т-лимфоцитов - 4-6 месяцев.

Специфический иммунитет может быть активным и пассивным , врожденным и приобретенным. Существуют четыре основных типа иммунитета:

  • естественный пассивный иммунитет (иммунитет новорожденного) - готовые антитела передаются от одного индивидуума к другому (того же вида); вследствие естественного разрушения антител в организме он обеспечивает лишь кратковременную защиту от инфекции;
  • приобретенный пассивный иммунитет - на основе образованных в организме одного индивидуума антител создают лечебные сыворотки и вводят их в кровь другому; этот вид иммунитета также сохраняется непродолжительное время;
  • естественный активный иммунитет - организм вырабатывает собственные антитела при инфицировании;
  • приобретенный активный иммунитет - в организм вводятся небольшие количества иммуногенов в виде вакцины.

Неспецифические факторы защиты включают:

  • непроницаемость кожного покрова и слизистых оболочек для микроорганизмов;
  • бактерицидные вещества в слюне, слезной жидкости, крови, спинномозговой жидкости;
  • выделение вирусов почками;
  • фагоцитоз - процесс поглощения чужеродных частиц и микроорганизмов специальными клетками: макрофагами и микрофагами;
  • гидролитические ферменты, расщепляющие микроорганизмы;
  • лимфокины;
  • систему комплемента - специальную группу белков, участвующих в «борьбе» с чужеродными микроорганизмами.

Фагоцитарная реакция осуществляется с помощью специальных лейкоцитов, способных к фагоцитозу, т.е. поглощению болезнетворных агентов и комплексов антиген-антитело. У человека фагоцитарную роль выполняют нейтрофилы и моноциты. Как только в организм попадают чужеродные частицы, к месту их внедрения направляются находящиеся поблизости лейкоциты, причем скорость некоторых из них может достигать почти 2 мм/ч. Приблизившись к чужеродной частице, лейкоциты обволакивают ее, втягивают внутрь протоплазмы и затем переваривают с помощью специальных пищеварительных ферментов. Многие из лейкоцитов при этом гибнут, и из них образуется гной. При распаде погибших лейкоцитов выделяются также вещества, вызывающие в ткани воспалительный процесс, сопровождающийся неприятными и болевыми ощущениями. Вещества, обусловливающие воспалительную реакцию организма, способны активировать все защитные силы организма: к месту внедрения чужеродного тела направляются лейкоциты из самых отдаленных частей тела.

  • Под антигеном понимается микроорганизм, вещество, продукт питания или другаясубстанция (например, пересаженные от другого организма ткани), несущие чужероднуюдля данного организма информацию, закодированную в структуре молекул белка.

Иммунология рассматривает антиген в качестве биологического маркера клеток, тканей, органов и жидкостей организма в процессах онто- и филогенеза. Эти структуры называют антигенами главного комплекса гистосовместимости (МНС), так как они контролируются группами генов главной системы гистосовместимости, расположенными у человека на шестой хромосоме.

МНС выполняют в организме разнообразные функции. Так, антигены МНС класса 1 и 2 определяют способность иммунной системы организма распознавать чужеродные антигены. Суть этого явления состоит в том, что микроорганизмы, продукты их распада или жизнедеятельности, другие неизмененные антигены Т-лимфоцитами не распознаются, поэтому вначале они подвергаются переработке в клетках-макрофагах, где происходит их частичная денатурация и протеолиз, как правило, до пептидов. Такой низкомолекулярный переработанный антиген перемещается на поверхность клетки, связывается с находящимися здесь молекулами МНС и становится доступным для восприятия Т-лимфоцитами. При этом комплексы антигенов с молекулами МНС класса 1 распознаются цитотоксическими Т-лимфоцитами, которые осуществляют разрушение злокачественно перерожденных или инфицированных вирусом клеток, а комплексы антигенов с молекулами МНС класса 2, образующимися в основном на В-лимфоцитах и макрофагах, распознаются Т-хелперами, которые как посредники передают сигнал и включают В- и Т-клетки в антителообразование или другие эффекторные процессы.

Антитела – это особый вид белков, называемых иммуноглобулинами, вырабатываемых под влиянием антигенов и обладающих способностью специфически реагировать с ними. Антитела могут нейтрализовать токсины бактерий и вирусы (антитоксины и вируснейтрализующие антитела), осаждать растворимые антигены (преципитины), склеивать корпускулярные антигены (агглютинины), повышать фагоцитарную активность лейкоцитов (опсонины), связывать антигены, не вызывая каких-либо видимых реакций (блокирующие антитела), совместно с комплементом лизировать бактерии и другие клетки, например, эритроциты (лизины).

Антитела представляют собой гликопротеины с молекулярной массой от 150 000 до 1 000 000. В простейшем случае молекула AT имеет форму буквы «игрек» или «рака» с меняющимся углом между двумя верхними отрезками («клешнями»), что говорит о гибкости ее структуры. Состоят антитела из четырех полипептидных цепей, связанных друг с другом дисульфидными мостиками. Две цепи – длинные и посередине изогнутые (как хоккейные клюшки), а две – короткие и прямые – прилегают к верхним отрезкам длинных цепей. Молекулярная масса длинных цепей 50 000, их называют тяжелыми, или Н-цепями; коротких – 25 000, их называют легкими, или Z-цепями. Тяжелые и легкие цепи отличаются по аминокислотному составу и антигенным свойствам.

Обе цепи иммуноглобулина по порядку расположения в них аминокислот делятся на две части. Одна из них, С-область, у всех цепей иммуноглобулина стабильна; другая, V-область, вариабельна, последовательность аминокислот в ней меняется в зависимости от вида антигена, вызывающего образование антитела. При этом на концах V-областей молекулы Y (на двух «клешнях рака») формируются два антигенсвязывающие центра. Последние у разных иммуноглобулинов имеют разную конфигурацию, комплементарную детерминантной группе того антигена, под воздействием которого выработались.

Таким образом, распознавание антигена соответствующим антителом происходит не по химической структуре, а главным образом по общей конфигурации антигена благодаря взаимной комплементарности с антигенсвязывающим центром. Антитела связываются с антигенами за счет пространственной комплементарности, которая обеспечивается межмолекулярными силами и водородными связями. Прочность взаимодействия между антигеном и одним антигенсвязывающим центром называется аффинностью (сродством). Реакция между антигеном и антителом приводит к образованию комплекса антиген-антитело (АГ-АТ). В некоторых случаях связывания антигена антителом уже достаточно для обезвреживания антигена – нейтрализации (например, обезвреживание столбнячного анатоксина). Сродство антител к соответствующим им антигенам может быть различным. В сыворотке против того или иного антигена всегда содержится смесь многих молекул антител с различным сродством к нему, и их соединение с антигеном обусловливает перекрестные реакции. Если в молекуле антигена имеются несколько детерминант с одинаковой антигенной специфичностью, то молекулярные агрегаты, образующиеся в присутствии специфических антител, могут становиться настолько крупными, что комплексы АГ-АТ уже не могут оставаться в растворе и выпадают в осадок – происходит преципитация. В диагностике преципитацию применяют для определения природы антигенов и специфичности антител. В реакциях антител с антигенами, представляющими собой частицы или клетки (частицы крови, бактерии), также могут образовываться крупные агрегаты, иногда даже видимые невооруженным глазом. Подобные реакции агглютинации («склеивания») используют для определения групп крови, идентификации бактерий, а также антител против бактериальных белков и гормонов в крови и моче. На основании этой реакции различают полные и неполные антитела. Так, соответствующие полные антитела (обычно принадлежащие к классу JgM) непосредственно вызывают агглютинацию эритроцитов, тогда как неполные антитела (преимущественно класса JgG) реагируют с расположенными на их поверхности антигенами, но в силу своих небольших размеров не могут вызывать агглютинацию.

Антигены, соединенные со специфическими участками связывания неполных антител, уже не могут реагировать с полными антителами, поэтому неполные антитела называют также блокирующими. Последние блокируют антиген, а нередко одновременно связывают комплемент, вследствие чего их уже называют и комплементсвязывающими. Если же реакция антиген-антитело не вызывает каких-либо изменений в организме, их называют антителами-свидетелями. Реагирование JgE и JgG с антигенами может приводить к развитию аллергий. При незначительных, бесследно исчезающих проявлениях аллергии на кожных покровах аллергические антитела называют реагинами, а при ярко выраженных повреждениях клеток кожи – агрессинами, или кожно-сенсибилизирующими антителами. Как и все белки, иммуноглобулины являются антигенами, и по отношению к ним вырабатываются антииммуноглобулины, то есть антитела против антител.

В зависимости от строения константных областей тяжелых цепей все иммуноглобулины подразделяют на пять классов: JgG, JgM,JgA,JgE,JgD.

Jg G активируют систему комплемента и связываются с некоторыми антигенами поверхности клеток, делая тем самым эти клетки более доступными для фагоцитоза. Поскольку это сравнительно мелкие мономерные молекулы, они могут проникать через плацентарный барьер из крови матери в кровь плода. Так как до рождения у плода существенной продукции антител не происходит (для этого требуется контакт с чужеродными веществами), JgG матери служат важными механизмами защиты новорожденного от инфекции. В последующем их количество пополняется при кормлении ребенка грудью (особенно в первые шесть часов после родов), что обеспечивает ему иммунитет в первые недели жизни. Содержание этих иммуноглобулинов в крови ребенка обычно даже выше, чем у матери. Они защищают организм новорожденного от вируса полиомиелита, вируса краснухи, от возбудителей менингита, коклюша, столбняка, дифтерии. Через 2–4 месяца содержание JgG заметно снижается, что связано с интенсивным распадом материнских AT и временной недостаточностью собственного синтеза. Со 2-го года жизни ребенка количество JgG в его крови начинает увеличиваться и достигает взрослого уровня к 4–5 годам.

Бурная выработка JgG происходит уже при повторном попадании антигена в организм, обеспечивая нейтрализацию бактериальных токсинов и вирусов. Период полураспада 24 дня.

JgM самые крупные антитела, вырабатывающиеся на первичное введение в организм антигена. Они отличаются выраженной авидностью и образуют прочные соединения с антигенами, несущими множественные детерминанты, – эти антитела вызывают агглютинацию и способны нейтрализовывать инородные частицы, обеспечивая устойчивость к бактериальным инфекциям. К JgM принадлежат антитела системы групп крови АВО, холодовые агглютинины и ревматические факторы. Сохраняются JgM , однако, недолго – период их полураспада не превышает 5 дней.

JgA могут представлять собой как мономеры, так и полимеры и вырабатываются как на первичное, так и на вторичное воздействие антигена. При этом сывороточные JgA накапливаются в крови. Биологическая роль их до конца не изучена. Секреторные JgA продуцируются в слизистых оболочках кишечника, в верхних дыхательных путях, в мочеполовой трубке, содержатся в слезной жидкости, слюне, молоке и обеспечивают местный иммунитет тканей против антигенов, контактирующих со слизистыми оболочками. Период полураспада – 6 дней.

Мономерные иммуноглобулины JgD и JgE присутствуют в плазме в очень низких концентрациях. Возможно, они функционируют как связанные с клетками рецепторы антигенов. JgE соединяются со специальными рецепторами на поверхности базофилов и тучных клеток при встрече с соответствующим антигеном, клетка – носитель этого иммуноглобулина – секретирует гистамин и другие вазоактивные вещества, вызывающие аллергическую реакцию.

JgD находится на поверхности В-лимфоцитов и вместе с JgM составляет основную часть их рецепторов. О физиологической роли их известно мало.

В последние годы стали проясняться некоторые механизмы генной регуляции синтеза иммуноглобулинов. Существенный шаг вперед в этом направлении был сделан тогда, когда было обнаружено, что сегменты генов, кодирующих Н- и L-цепи иммуноглобулинов в предшественниках лимфоцитов, вначале «разбросаны» по хромосоме, то есть пространственно разделены. Для каждой вариабельной (V-области) части цепи исходно существует очень много (по меньшей мере 10 3) различных генных сегментов. Поскольку и Н-, и L-цепи антител имеют свои V-области, участвующие в связывании антигена, числом возможных комбинаций обеспечивается синтез по меньшей мере 10 6 специфичностей антител. При таком огромном разнообразии возможностей антиген вызывает пролиферацию именно тех В-лимфоцитов, которые распознают данный антиген.