Препараты оказывающие бактерицидное действие. Антибактериальные препараты

Наименование параметра Значение
Тема статьи: Бактерицидные препараты
Рубрика (тематическая категория) Образование

УСЛОВНО-ПАТОГЕННЫЕ МИКРООРГАНИЗМЫ

Адгезивность как фактор патогенности.Микробыспособны проникать через строго определœенные ворота. Взаимодействие микробов с эпителиальными клетками начинается со специфического прикрепления их к эпителию – адгезии.

Экзотоксины – продукты метаболизма микробной клетки, выделяющиеся в окружающую среду. Это белковые вещества со свойствами ферментов, высокотоксичны, не вызывают лихорадки у хозяина. Экзотоксины по химической структуре делятся на простые и сложные. Отличительная их особенность – выраженная органотропностьивысокая специфичность действия.

ФАКТОРЫ ПАТОГЕННОСТИ И ВИРУЛЕНТНОСТИ

Все свойства, опреде­ляющие патогенность, проявляются микробами посредством продуцируемых БАВ – факторов патогенности и разделяются на три категории: 1) факторы патогенности с инвазивной функцией; 2) факторы патогенности с антифагоцитарной функцией; 3) факторы патогенности с токсической функцией.

Факторы патогенности с инвазивной и антифагоцитарной функциями играют роль в начальных стадиях развития инфекции как пусковой момент в возникновении инфекционного процесса. Формирование специфических патологических поражений при многих инфекциях определяется группой факторов с токсической функцией. Токсигенность – способность вырабатывать токсические вещества.

Эндотоксины – липополисахаридные комплексы в составе клеточной стенки бактерий, освобождаются только при ее распаде. Относительно стабильны, выдерживают нагревание свыше 60 0 С. Слаботоксичны, вызывают лихорадку, менее токсичны, органотропностьвыражена слабо. .

Генетический контроль токсигенности . Токсигенные свойства микроорганизмов находятся под контролем так называемых tox-генов , локализованных в хромосоме или внехромосомных генетических струк­турах (профагах или плазмидах).

Существуют условно-патогенные микроорга­низмы : представители нормальной микрофлоры че­ловека и животных (Е. coli, S. faecalis, S. epidermidis, P. vulgaris и др.), обитающие на коже и слизистых оболочках органов и систем, сообщающихся с внешней средой. В здоровом организме нормальная микрофлора создает конкурентные условия для патогенных микробов, оказывает стимулирующее влияние на функционирование иммунной системы. Присущие им потенциально-патогенные свойства условно-патогенные микробы про­являют при ослаблении защитных сил организма (впервые указал И.Мечников).

Продуцент первого антибиотика пенициллина, подавляющего развитие стафилококков – штамм микроскопического гриба Penicillium notatum, выделœенный А.Флемингом в 1929 ᴦ. В 1941-1942 гᴦ. Чейн и Флори получили пенициллин в чистом виде. Более продуктивны штаммы P. Сhrysogenum. В 1943 ᴦ. В СССР З.В.Ермольева выделила штамм Р. crustosum – продуцент крустозина.

Антибиотики - ϶ᴛᴏ специфические биологически активные вещества, образуемые клеткой в процессе жизнедеятельности, и их производные и синтетические аналоги, способные избирательно подавлять микроорганизмы или задерживать развитие злокачественных новообразований.

Особенно выражена способность продуцировать антибиотики у актиномицетов: стрептомицин, эритромицин, миомицин, канамицин, нистатин, гентамицин. Микромицеты (Deuteromycetes) продуцируют пенициллин, цефалоспорины, микроцид, гризеофульвин, трихотецин, бациллы – грамицидин, полимиксин, бацитрацин, стрептококки – низин.

Антибиотики из растений: аренарин (из бессмертника), аллицин (из чеснока), иманин и новоиманин (из зверобоя).

Антибиотики из тканей животных: экмолин (из молок рыб).

Антибиотики избирательно токсичны для патогенных микробов: пенициллин – для Г + бактерий, стрептомицин (Ваксман, 1944) – антибиотик широкого спектра действия. Наиболее широким спектром действия обладают тетрациклиновые антибиотики из стрептомицетов. К ним чувствительны грамположи­тельные, грамотрицательные бактерии, микоплазмы, риккетсии, круп­ные вирусы, простейшие.

Некоторые антибиотики (оливомицин, брунеомицин, актиномицины) подавляют развитие злокачественных новообразований.

Механизм действия антибиотиков. Характер и механизм биологи­ческого действия антибиотиков обусловлены спецификой химического строения препарата и особенностями структуры и химического состава бактериальной клетки.

Мишень для действия пенициллина – клеточная стен­ка. Стрептомицин ингибирует синтез белка благодаря избирательному взаимодействию с субчастицами рибосом. Механизм антибактериального действия левомицетина состоит в подавлении пептидил-трансферазной реакции, благодаря чему прекращается синтез белка в бактериальной клетке. Антимикробное действие нистатина и других полиеновых антибиотиков обусловлено их избирательным связыванием с цитоплазматической мембраной, что при­водит к нарушению ее проницаемости.

Сегодня выделœено и изучено уже более 5 тыс. антибиоти­ков. Практическое применение в медицинœе и народном хозяйстве нашли около 150 антибиотиков. Частота обнаружения новых эф­фективных антибиотиков за последнее десятилетие заметно снизилась.

Резистентность к антибиотикам . Естественная устойчивость обусловлена отсутствием у микроорганизмов ʼʼмишениʼʼ для действия антибиотика, приобретенная устойчивость обусловлена мутациями в хромосомных генах, контролирующих синтез компонентов клеточной стенки, цитоплазматической мембраны, рибосомных или транспортных белков. Приобретенная резистентность возникает в результате переноса плазмиды (R-фактор), контролирующей множественную резистентность бактерий к антибиотикам.

Бактерицидные препараты - понятие и виды. Классификация и особенности категории "Бактерицидные препараты" 2017, 2018.

Множество микроорганизмов окружают человека. Есть полезные, которые живут на коже, слизистых и в кишечнике. Они помогают пераваривать пищу, участвуют в синтезе витаминов и защищают организм от патогенных микроорганизмов. А их тоже немало. Многие заболевания вызываются деятельностью бактерий в организме человека. И единственным способом справиться с ними являются антибиотики. Большинство их них оказывает бактерицидное действие. Это свойство таких препаратов помогает предотвратить активное размножение бактерий и приводит к их гибели. Различные средства с таким эффектом широко используются для внутреннего и наружного применения.

Что такое бактерицидное действие

Это свойство препаратов применяется для уничтожения различных микроорганизмов. Обладают таким качеством различные физические и химические агенты. Бактерицидное действие - это способность их разрушать бактерий и этим вызывать их гибель. Скорость этого процесса зависит от концентрации действующего вещества и численности микроорганизмов. Только при применении пенициллинов бактерицидное действие не усиливается при увеличении количества препарата. Бактерицидным действием обладают:

Где требуются такие средства

Бактерицидное действие - это то свойство некоторых веществ, которое постоянно требуется человеку в хозяйственной и бытовой деятельности. Чаще всего такие препараты применяются для дезинфекции помещений в детских и медицинских учреждениях, и заведениях общественного питания. Используют их для обработки рук, посуды, инвентаря. Особенно нужны бактерициндные препараты в медицинских учреждениях, где они применяются постоянно. Многие хозяйки используют такие вещества и в быту для обработки рук, сантехники и пола.

Медицина - это тоже та область, где препараты бактерицидного действия используют очень часто. Наружные антисептики кроме обработки рук применяются для очищения ран и борьбы с инфекциями кожи и слизистых. Химиотерапевтические препараты - это пока единственное средство лечения различных инфекционных заболеваний, вызываемых бактериями. Особенность таких препаратов в том, что они разрушают клеточные стенки бактерий, не затрагивая клетки человека.

Антибиотики бактерицидного действия

Такие препараты для борьбы с инфекцией используются чаще всего. Антибиотики делятся на две группы: бактерицидные и бактериостатические, то есть те, которые не убивают бактерии, а просто не дают им размножаться. Первая группа используется чаще, так как действие таких препаратов наступает быстрее. Их применяют при острых инфекционных процессах, когда происходит интенсивное деление клеток бактерий. У таких антибиотиков бактерицидное действие выражается в нарушении синтеза белка и предотвращении построения клеточной стенки. В результате этого бактерии гибнут. К таким антибиотикам относятся:

Растения с бактерицидным действием

Способностью уничтожать бактерии обладают и некоторые растения. Они менее эффективны, чем антибиотики, действуют намного медленнее, но в качестве вспомогательного лечения применяются часто. Бактерицидное действие оказывают такие растения:


Местные дезинфицирующие средства

Такие препараты, обладающие бактерицидным действием, используются для обработки рук, инвентаря, медицинских инструментов, пола и сантехники. Некоторые их них безопасны для кожи и даже используются для лечения инфицированных ран. Их можно разделить на несколько групп:


Правила применения таких препаратов

Все бактерицидные средства являются сильнодействующими и могут вызывать серьезные побочные эффекты. При использовании наружных антисептиков обязательно соблюдать инструкцию и не допускать передозировки. Некоторые дезинфицирующие средства очень ядовиты, например, хлор или фенол, поэтому при работе с ними нужно защищать руки и органы дыхания и четко соблюдать дозировку.

Химиотерапевтические препараты для приема внутрь также могут быть опасными. Ведь вместе с патогенными бактериями они уничтожают и полезные микроорганизмы. Из-за этого у пациента нарушается работа желудочно-кишечного тракта, наблюдается недостаток витаминов и минералов, снижается иммунитет и появляются аллергические реакции. Поэтому при применении бактерицидных препаратов нужно соблюдать некоторые правила:

  • принимать их необходимо только по назначению врача;
  • очень важна дозировка и режим приема: действуют они только при наличии в организме определенной концентрации действующего вещества;
  • нельзя прерывать лечение раньше срока, даже если состояние улучшилось, иначе бактери могут вывыработать устойчивость;
  • запивать антибиотики рекомендуется только водой, так они лучше действуют.

Бактерицидные препараты оказывают влияние только на бактерии, уничтожая их. Они неэффективны против вирусов и грибков, но губят полезные микроорганизмы. Потому самолечение такими препаратами недопустимо.

Антибактериальные средства подразделяют на бактериостатические (подавляющие размножение бактерий) и бактерицидные (вызывающие их гибель).

Бактерицидные лекарственные средства

1. Бета-лактамные антибиотики

  • Пенамы (бензилпенициллин, ампициллин, амоксициллин, нафциллин, тикарциллин, пиперациллин)
  • Пенемы (пока не выпускаются)
  • Карбапенемы (имипенем, меропенем)
  • Цефемы (цефалоспорины, цефамицины)
  • Карбапенемы (лоракарбеф)
  • Монобактамы (азтреонам)

2. Аминогликозиды: гентамицин, тобрамицин, амикацин, нетилмицин, стрептомицин

3. Фторхинолоны: ципрофлоксацин, офлоксацин, норфлоксацин, эноксацин, ломефлоксацин, левофлоксацин, спарфлоксацин, гатифлоксацин, моксифлоксацин

4. Гликопептиды: ванкомицин, тейкопланин

5. Другие: триметоприм/сульфаметоксазол, метронидазол, рифампицин

Бактериостатические лекарственные средства

1. Макролиды: эритромицин, кларитромицин, азитромицин, диритромицин

2. Клиндамицин

3. Стрептограмины (хинупристин/дальфопристин)

4. Хлорамфеникол

5. Тетрациклины: тетрациклин, миноциклин, доксициклин

Для лечения большинства инфекций достаточно бактериостатического действия, однако при нарушениях иммунитета (например, нейтропении) или слабых защитных механизмах в очаге инфекции (менингит, эндокардит) нужны бактерицидные препараты. В таких условиях бактериостатические препараты оказывают лишь временное действие, так как после их отмены микроорганизмы вновь начинают размножаться.

Бактерицидное и бактериостатическое действие может быть избирательным. Так, макролиды, клиндамицин, стрептограмины, хлорамфеникол и тетрациклины оказывают бактериостатическое действие, но в некоторых условиях или в отношении определенных микроорганизмов они бактерицидны. И наоборот, пенициллины - бактерицидные антибиотики - на энтерококков действуют бактериостатически.

Кроме того, активность антибактериальных препаратов может зависеть от концентрации: в низкой концентрации в очаге инфекции препарат оказывает бактериостатический эффект, в высокой - бактерицидный. Так, быстрота и выраженность бактерицидного действия аминогликозидов, фторхинолонов и метронидазола находятся в прямой зависимости от концентрации препарата.

Высокую концентрацию в очаге поражения позволяет получить эндолимфатическое (лимфотропное) введение препаратов.

С другой стороны, бактерицидное действие β-лактамных антибиотиков и ванкомицина проявляется медленно и при увеличении концентрации антибиотика почти не усиливается. Бета-лактамные антибиотики бактерицидны только в отношении быстро делящихся бактерий, а фторхинолоны - и в отношении покоящихся. Размножение микроорганизмов характерно для свежей культуры и ранней стадии инфекции, а при хронической инфекции большая часть возбудителей не делится.

Пенициллины

Пенициллины представляют собой группу хорошо переносимых препаратов. Они оказывают бактерицидный эффект на бактерий, который обусловлен угнетением синтеза клеточной стенки. Изначально узкий ан-тибактериальный спектр пенициллинов был расширен посредством изме-нения структуры боковых цепей. Однако наличие в структуре пеницилли-нов 5-аминопенициллиновой кислоты, составляющих их основу, делает пенициллины восприимчивыми к действию?-лактамаз. Комбинация пе-нициллинов с ингибиторами?-лактамаз позволяет расширить антибакте-риальный спектр препаратов в отношении некоторых патогенов. Период полувыведения пенициллинов очень мал (за редким исключением) и со-ставляет примерно 1 час. По этой причине их следует принимать не реже трех раз в сутки.

Пенициллин G. Используется только парентеральное введение препарата (в/м или в/в). Пролонгированные формы препарата характери-зуются продолжительной активностью. Высокоэффективен в отношении стрептококков группы А, гонококков, трепонем, восприимчивых стафи-лококков (лишь 20-60 % из них), клостридий и других анаэробов.

Феноксиметилпенициллин (пенициллин V). Этот пенициллин яв-ляется кислотоустойчивым, что делает возможным его пероральный при-ем. Действует аналогично пенициллину G, однако с меньшей эффектив-ностью.

Пенициллиназа-услойчивые пенициллины. Показанеим к их при-менению являются лишь инфекция, вызванная пенициллиназапродуци-рующими стафилококками, так как активность этих препаратов в отноше-нии восприимчивых штаммов составляет лишь десятую их активности пенициллина G.

Аминопенициллины (ампициллин, бакампициллин, амоксицил-лин). Спектр антибактериального действия этих антибиотиков соответст-вует спектру пенициллина G, помимо этого они обладают повышенной активностью в отношении стрептококков, особенно энтерококков, и лис-терий. Гонококки и многие бактерии семейства Enterobacteriaceae также чувствительны к аминопенициллинам.

Ампициллин был первым антибиотиком группы пенициллина, который обладал широким спектром Действия. Он является предпочти-тельным для применения во время беременности, что связано с широким спектром антибактериальной активности, хорошим распределением в тканях и длительным опытом применения.

Амоксициллин обладает лучшей всасываемостью, чем ампицил-лин.

Основным недостатком этой группы антибиотиков является от-сутствие устойчивости к действию?-лактамазы, вследствие чего многие стафилококки, кишечные бактерии или другие условно-патогенные мик-роорганизмы не восприимчивы к их действию.

Комбинация аминопенициллинов с ингибиторами?-лактамаы.

Лакамазы являются ферментами, нарушающими целостность?-лактамного кольца?-лактамных антибиотиков (пенициллины и цефалос-порины), что приводит к деактивации последних.

Чаще всего?-лактамазы локализуются в периплазматическом пространстве ряда грам отрицательных бактерий, где они являются ча-стью бактериальной защитной системы.

Гены, кодирующие?-лактамазы могут располагаться на хромо-соме или эписоме, т.е. они естестенным путем возникают у одних бакте-рий и могут передаваться другим.

Ингибиторы?-лактамаз были созданы для повышения активности? лактамных антибиотиков. Они обычно представляют собой рудементариные?-лактамные кольца, которые необратимо связываются с?-лактамазами бактерий, инактивируя их.

Таким образом, добавление ингибиторов?-лактамаз позволяет значительно расширить спектр антибактериального действия пеницилли-нов и цефалоспоринов.

Наиболее частыми продуцентами?-лактамаз являются условно-патогенные микроорганизмы, такие как Staphylococcus aureus, многие кишечные бактерии и некоторые анаэробы группы Bacteroides.

В настоящее время доступны три разновидности ингибиторов?-лактамаз:

Клавулановая кислота;

Сульбактам;

Тазобактам.

Они могут назначаться либо в качестве дополнения к антибиоти-кам, либо в виде фиксированной комбинации с определенными антибио-тиками, например:

Амоксициллин+клавуланат;

Ампициллин+сульбактам;

Пиперациллин+тазобактам.

Уреидопенициллины.

Имеются формы лишь для парентерального введения. Спектр ак-тивности этих антибиотиков немного шире спектра ампициллина, поэто-му некоторые условно-патогенные микроорганизмы, в частности разно-видности Pseudomonas, Klebsiella и Serratia, должны быть более чувстви-тельным к действию уреидопенициллинов, что, тем не менее, не было однозначно подтвержено клинически. Кроме того, эти антибиотики не устойчивы к действию?-лактамаз.

Примеры: азлоциллин, мезлоциллин и пиперациллин.

Эти антибиотики являются одними из наиболее часто назначае-мых, что обусловлено их широким антибактериальным спектром действия и хорошей переностимостью.

К бактериям, устойчивым к действию цефалоспоринов, относятся энтерококки, листерии, хламидии и метициллин-устойчивые штаммы зо-лотистого стафилококка.

Изначально цефалоспорины были доступны лишь в формах для патентерального введения. В настоящее время имеется несколько эффек-тивных препаратов для приема внутрь.

Цефалоспорины подразделяются на четыре группы – I-IV поко-лений (таб.7), при этом спектр их антибактериальной активности все больше смещается от грамположительных до грамотрицательных и ус-ловно-патогенных микроорганизмов.

Таблица № 7

Как и пенициллины, цефалоспорины относятся к?-лактамным антибиотикам и угнетают синтез клеточной стенки бактерий (синтез пеп-тидогликанов).

Однако по механизму действия они отличны от пенициллинов. Цефалоспорины отличаются степенью сродства к бактериальным связы-вающим протеинам, могут проникать сквозь клеточную мембрану бакте-рий и устойчивы к действию?-лактамаз.

Модификация боковых цепей позволила значительно расширить спектр активности цефалоспоринов, особенно в отношении грамотрица-тельных бактерий, что, однако, привело к некоторому снижению активно-сти против грамположительных бактерий и стафилококков.

Благодаря своей высокой эффективности и хорошей переносимо-сти цефалоспорины имеют большое значение в гинекологии. Они могут назначаться во время беременности.

Недостатком применения этих препаратов в гинекологической практике является их неэффективность при лечении хламидиоза.

Первое поколение: группа цефалотина

Эти антибиотики высокоэффективны в отношении грамположи-тельных микроорганизмов, таких как стрептококки, стафилококки и гоно-кокки; их эффективность в отношении грамотрицательных бактерий варьирует.

Второе поколение: группа цефуроксима

Эти препараты по большей части устойчивы против р-лактамаз. Они высокоэффективны против грамположительных бактерий (например, стафилококков), кроме того, обладают повышенной активностью в отношении многих грамотрицательных палочек. Они эффективны против гонококков, в частности против тех из них, которые продуцируют?-лактамазы. Klebsiella pneumoniae также высокочувствительна к действию этих препаратов. В противоположность этому, псевдомонады, энтерокок-ки, микоплазмы и хламидии резистентны к цефалоспоринам второго по-коления.

В настоящее время чаще всего используются такие препараты этой группы, как цефуроксим и цефотиам.

Цефомандол, цефоперазон, цефотетан и моксалактам теперь практически не используются из-за неблагоприятного влияния на сверты-ваемость крови и других проблем, связанных с их назначением. Цефокси-тин высокоэффективен против отдельных штаммов Васteroides fragilis, однако менее эффективен против Е. coli и Klebsiella. Препарат уже дли-тельное время используется в гинекологии.

Третье поколение: группа цефотаксима

Спектр антибактериального действия препаратов этой группы еще шире, особенно в отношении грамотрицательных бактерий. Некото-рые препараты достаточно эффективны против условно-патогенных псев-домонад. Период полувыведения этих препаратов варьирует от 1 ч для цефотаксима до 8 ч для цефтриаксона и зависит, помимо всего прочего, от способности связываться с белками.

Четвертое поколение

Препараты этой группы имеют самый широкий спектр активно-сти. Цефтазидим и цефепим также эффективны против псевдомонад. Препараты менее эффективны против грамположительных и анаэробных бактерий.

Пероральные формы цефалоспоринов

Основным показанием для их приема являются инфекции кожи и мягких тканей, когда предполагаемыми возбудителями являются стрепто-кокки и стафилококки. Эти препараты относятся к самым часто назначае-мым пероральным антибиотикам (табл. 4.3).

К примеру, цефуроксим аксетил высокоэффективен против стрептококков групп А и В, гонококков, Staphylococcus aurem и многих других грамотрицательных бактерий. Приема двух доз этого препарата достаточно для излечения гонококковой инфекции; для лечения других инфекций препарат принимается 2 раза в день в течение 5 или более дней.

Карбапенемы

Среди всех?-лактамных антибиотиков карбапенемы обладают самым широким спектром антибактериальной активности, действуя даже против условно-патогенных и анаэробных бактерий. К их действию ус-тойчивы лишь микобактерии, Enterococcus faecium и штаммы MRSA. Карбапенемы хорошо подходят для монотерапии тяжелой инфекции не-ясного генеза. Препараты обладают хорошей переносимостью, однако следует помнить, что длительный прием карбапенемов способствует се-лекции мультирезистентных бактерий и грибков.

К карбапенемам относятся:

Имипенем + циластатин, фиксированная комбинация антибио-тика и ингибитора;

Меропенем;

Эртапенем.

Монобактамы

Используются в комбинации с другими препаратами или при ал-лергии на пенициллин. Особенно эффективны против бактерий семейства Enterobacteriaceae (за исключением Citrobaсter и Entembacter).

Тетрациклины

Бактериостатический эффект этих препаратов основан на подав-лении синтеза белков, их активность зависит от характера среды и ее рН. Препараты обладают длительным периодом полувыведения (примерно 12 ч), вследствие чего назначаются однократно; более того, они эффективны при пероральном введении. Путем пассивной диффузии препараты проникают через плазматическую мембрану; обратная диффузия невозможна. Возникающая в результате высокая внутриклеточная концентрация препарата является преимуществом в случае внутриклеточной инфекции, например, хламидийной.

В связи с тем, что тетрациклины внедряются в ткань зубов и ног-тей, их не следует назначать в период беременности и кормления грудью. Они также взаимодействуют с оральными контрацептивами, эффектив-ность которых снижается вследствие бактериального гидролиза конъюги-рованных эстрогенов в кишечнике. Противосудорожные препараты также снижают активность тетрациклинов.

Тетрациклины обладают относительно широким спектром анти-бактериальной активности, однако вследствие их широкого использова-ния участились случаи резистентности к препаратам этой группы, осо-бенно грамотрицательных бактерий. Поэтому тетрациклины не подходят для монотерапии тяжелых инфекций. Однако эти препараты эффективны против многих микроорганизмов, имеющих большое клиническое значе-ние в гинекологии, в частности, против гонококков (хотя и не всех из них), бледной трепонемы, листерий, микоплазм и хламидий.

К препаратам этой группы относятся:

Тетрациклин;

Окситетрациклин;

Доксициклин;

Миноциклин.

Доксициклин является предпочтительным препаратом, так как он может быть назначен перорально, хорошо всасывается независимо от приема пищи и хорошо переносится благодаря низкому метаболиз-му.

Аминогликозиды

Эти препараты также ингибируют синтез белков и оказывают бактерицидное действие, особенно против широкого спектра грамотрица-тельных бактерий.

Бактерицидный эффект обусловлен продукцией нефункциональ-ных белков, которые встраиваются в стенку бактерий и изменяют ее про-ницаемость. С недавних пор аминогликозиды стали использоваться реже, что связано с ограничением сферы их применения и появлением новых, менее токсичных соединений, обладающих сравнимым спектром антибактериального действия.

Аминогликозиды высокоэффективны против стафилококков, Klebsiela pneumoniae, Escherichia coli, Proteus vulgaris и других кишечных бактерий. Они менее эффективны против стрептококков и анаэробов. В комбинации с другими антибиотиками аминогли-козиды играют важнейшую роль при лечении тяжелых инфекций. Их следует назначать парентерально. В связи с нефротоксичностью препаратов этой группы у пациентов с почечной недостаточностью подбор дозы должен производиться индивидуально.

Принимая во внимание возможность нефро- и ототоксического воздействия аминогликозидов, их назначения следует избегать во время беременности.

В настоящее время рекомендуется однократный прием препарата, тогда как ранее рекомендовалось вводить суточную дозу за 3 раза, в условиях мониторинга терапевтического эффекта препарата. Однократная доза снижает риск нефроототоксичности, а послеантибиотический эффект (ПАЭ) более высоких начальных доз препарата повышает его эффективность.

Наиболее важными представителями группы аминогликозидов являются (только для парентерального введения):

Гентамицин;

Тобрамицин;

Нетилмицин;

Амикацин.

К этой группе также относят:

Неомицин, местный антибиотик, используемый для терапии кожных инфекций или для подавления кишечной флоры в случае пече-ночной комы;

Спектиномицин, аминоциклитоловый антибиотик, имеющий широкий спектр действия, но относительно малую активность; использу-ется только для монотерапии гонореи (внутримышечные инъек-ции).

Антибиотики из группы макролидов (табл.8) подавляют синтез белков.

Таблица № 8

Эритромицин известен в течение уже очень длительного времени. Препарат оказывает бактериостатический эффект при применении его в терапевтических дозах и бактерицидный эффект – в высоких дозах. Он высокоэффективен против стрептококков, гонококков, листерий, Chlamy-dia trachomatis, Mycoplasma pneumoniae (но не Mycoplasma hominis) и Ureaplasma urealyticum.

Эритромицин эффективен, хотя и в различной степени, против стафилококков. Во время беременности, когда другие антибиотики про-тивопоказаны, он является препаратом выбора для лечения инфекций, вызванных чувствительными к нему патогенами (например, хламидийной инфекции). В связи с возникновением побочных эффектов со стороны желудочно-кишечного тракта у 10-20% пациентов, более предпочтитель-ными являются макролиды последнего поколения.

К макролидам относят также джозамицин и такие современные препараты, как рокситромицин и кларитромицин. Благодаря повышенной эффективности двух последних препаратов они могут назначаться в меньших дозах, что способствует лучшей их переносимости. Азитромицин являетется макролидом с очень длительным периодом полувыведения, он назначаете! 1 раз в неделю либо однократно.

В настоящее время основными показаниями для назначения мак-релидов являются инфекции, вызванны хламидиями, микоплазма-ми.

Спирамицин, еще один макролид, в современной практике ис-пользуете редко. Однако он до сих пор является препаратом выбора для лечения токсоплазмоза в I триместре беременности, так как практически не проникает через плаценту.

Линкозамиды

Представителями антибиотиков этой группы являются линкоми-цин и имеющий большое значение в гинекологии клиндамицин (производ-ное линкомицина). Оба препарата подавляют синтез белков. Они эффек-тивны против стафилококков и анаэробов. Гонококки, а также все аэроб-ные грамотрицательные палочки (Enterobacteriaceae) и микоплазмы ус-тойчивы к действию этих препаратов.

Линкозамиды могут назначаться как внутрь, так и парентерально. У 5-20% пациентов прием этих препаратов может приводить к изменению микрофлоры кишечника, что будет проявляться изменением консистенции стула (жидкий) и/или псевдомембранозным колитом, что следует иметь в виду при использовании этих антибиотиков.

Клиндамицин также применяется в виде местной формы (влага-лищного геля) для лечения различных форм дисбиоза влагалища, включая бактериальный вагиноз. Влагалищные формы являются предпочтительными для терапии гнойного кольпита.

Гликопептиды и липопептиды

Эти антибиотики являются растворимыми, комплексными соеди-нениями, имеющими высокую молекулярную массу и обладающими пре-красной эффективностью в отношении грамположительных бактерий, которые, однако, лишены активности против грамотрицательных бакте-рий. Два представителя этой группы в настоящее время одобрены для применения: ванкомицин и тейкопланин. При парентеральном назначении препараты оказывают системное действие. Показания к пероральному приему ванкомицина возникают лишь в случае необходимости проведе-ния вторичной терапии тяжелого, антибиотик-ассоциированного колита. Препарат выделяется через почки.

Ванкомицин является гликопептидом с высокой молекулярной массой, бактерицидный эффект которого особенно выражен в отношении синтеза клеточных мембран бактерий. Препарат отличается особой эф-фективностью против стафилококков, стрептококков и Clostridium difficile. Ванкомицин имеет большое клиническое значение в качестве препарата резерва для лечения стафилококковых инфекций, а также пре-паратом выбора для лечения инфекций, вызванных метициллин-устойчивыми штаммами Staphylococcus aureus (MRSA).

Оксазолидиноны

Препараты этой группы представляют собой совершенно новый класс полностью синтетических антимикробных препаратов.

Линезолид характеризуется высокой эффективностью против стафилококков, включая MRSA-штаммы, а также против бензилпеницил-линрезистентных пневмококков (Streptococcus рпеиmoniae), энтерококков (Enterococcus faecalis и E.faecium) и других грамположительных бактерий. Период полувыведения этих антибиотиков составляет от 5 до 7 ч.

Свойства. Фторхинолоны представляют собой синтетические ан-тимикробные соединения, являющиеся производными налидиксовой ки-слоты и обладающие особенно широким спектром действия. По химиче-ской структуре это фторированные 4-хинолоны, которые нарушают син-тез ДНК путем угнетения ДНК-топоизомеразы (ДНК-гиразы).

Постоянное совершенствование фторхинолонов со времени вне-дрения в клиническую практику в 1962 г. сделало их наиболее активным и разносторонним классом противоинфекционных препаратов. В связи с хорошим всасыванием этих препаратов при пероральном пути введения стала возможной пероральная терапия инфекций, вызываемых мультире-зистентными условно-патогенными микроорганизмами. Благодаря тому, что основным путем выведения фторхинолонов являются почки, боль-шинство этих препаратов хорошо подходят для терапии инфекций моче-выводящих путей. Об этом пути выведения следует помнить в случае по-чечной недостаточности; еще одним путем экскреции фторхинолонов является печень. Эти соединения обладают значительно более длительным периодом полувыведения, чем пенициллины, в связи с чем современные фторхинолоны можно принимать один раз в день.

Фторхинолоны высокоактивны против бактерий семейства Enterobacteriaсеае. Однако при инфекциях, вызываемых грамположитель-ными бактериями (стрептококки и стафилококки), они не являются препаратами первого ряда. В то же время более современные представи-тели этой группы (моксифлоксацин и гатифлоксацин) эффективнее остальных препаратов в отношении хламидийных и даже анаэробных инфекций. Фторхинолоны не действуют на лактобациллы, что является их преимуществом.

Показания. Фторхинолоны показаны в случае осложненных ин-фекций мочевых путей, вызываемых условно-патогенными микроорга-низмами, при инфекциях мягких тканей, вызываемых условно-патогенными и некоторыми патогенными микроорганизмами с различной чувствительностью, а также при хламидийной инфекции. Они эффектив-ны, хотя и с некоторыми ограничениями, в отношении условно-патогенных микрооганизмов, обладающих высокой природной резистент-ностью (например, псевдомонад). Однако даже в этом случае фторхино-лоны способствуют развитию резистентности, правда, она появляется не так быстро, как при использовании других препаратов В связи с повсеме-стным использованием фторхинолонов развитие лекарственной устойчи-вости ускорилось почти у всех видов бактерий, против которых эти анти-биотики применялись.

Фторхинолоны подразд четыре группы (от первого до четвертого поколения) (табл. 9).

Таблица № 9

Нитроимидазолы

Эти химиотерапевтические препараты являются предпочтитель-ными для лечения инфекций, вызванных анаэробными бактериями и про-стейшими. В группе нитроимидазов выделяют четыре различных препа-рата, хотя в настоящее время используют лишь два из них (метронидазол и тинидазол):

Метронидазол;

Орнидазол;

Тинидазол;

Ниморазол.

У простейших и облигатных анаэробных бактерий нитроимида-золы входят в активную форму путем восстановления азотной группы. Восстановленный метаболит ингибирует синтез нуклеиновой кислоты, связываясь с ДНК.

Нитроимидазолы могут применять перорально, внутривенно, рек-тально и интавагинально, однако не для каждого из этих путей введения имеются соответствующие лекарственные формы. Благодаря высокой степени проникновения этих препаратов в ткани они могут накапливаться в них в высоких концентрациях.

Нитроимидазолы являются препаратами выбора для лечения трихомониаза, бактериального вагиноза, кроме того, в комплексе с другими препаратами они используются для лечения тяжелых инфекций, протекающих с участием анаэробных микроорганизмов. Благодаря длительному периоду полувыведения (от 8 до 12 ч; исключение составляет ниморазол, для которого период полувыведения составляет 3 ч) препараты назначаются один или, чаще всего, два раза в день.

Резервные антибиотики

Кинупристин/Далфопристин

Зарегистрированный под торговым названием Синерцид, этот препарат содержит кинупристин и далфопристин в соотношении 30:70. Эти стрептограмины вырабатываются различными штаммами Streptomyces и имеют некоторое сродство с линкозамидами и макролидами. Вместе эти три типа ингибиторов синтеза белков именуются макролид-линкозамид-стрептограминовой (MLS) группой антибиотиков. Они связываются с различными участками рибосом бактерий, нарушая, таким образом, синтез белков. Данный антибиотик назначается внутривенно и является резервом для лечения тяжелых, потенциально угрожающих жизни инфекций, вызванных мультирезистентными условно-патогенными микроорганизмами. Помимо прочего, он активен против грамполо-жительных кокков, например, метициллинрезистентных штаммов Staphylococcus aureus (MRSA) и ванкомицинрезистентных штаммов Entemcoccus faecium. Препарат не эффективен в отношении Enterococcus faecalis.

  • ХАРАКТЕРИСТИКА СОВРЕМЕННЫХ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ, ПРИМЕНЯЕМЫХ ДЛЯ ЛЕЧЕНИЯ ВОЗДУШНО-КАПЕЛЬНЫХ ИНФЕКЦИЙ И СОПУТСТВУЮЩЕЙ ПАТОЛОГИИ
  • Продуцент первого антибиотика пенициллина, подавляющего развитие стафилококков – штамм микроскопического гриба Penicillium notatum, выделенный А.Флемингом в 1929 г. В 1941-1942 гг. Чейн и Флори получили пенициллин в чистом виде. Более продуктивны штаммы P. Сhrysogenum. В 1943 г. В СССР З.В.Ермольева выделила штамм Р. crustosum – продуцент крустозина.

    Антибиотики – это специфические биологически активные вещества, образуемые клеткой в процессе жизнедеятельности, и их производные и синтетические аналоги, способные избирательно подавлять микроорганизмы или задерживать развитие злокачественных новообразований.

    Особенно выражена способность продуцировать антибиотики у актиномицетов: стрептомицин, эритромицин, миомицин, канамицин, нистатин, гентамицин. Микромицеты (Deuteromycetes) продуцируют пенициллин, цефалоспорины, микроцид, гризеофульвин, трихотецин, бациллы – грамицидин, полимиксин, бацитрацин, стрептококки – низин.

    Антибиотики из растений: аренарин (из бессмертника), аллицин (из чеснока), иманин и новоиманин (из зверобоя).

    Антибиотики из тканей животных: экмолин (из молок рыб).

    Антибиотики избирательно токсичны для патогенных микробов: пенициллин – для Г + бактерий, стрептомицин (Ваксман, 1944) – антибиотик широкого спектра действия. Наиболее широким спектром действия обладают тетрациклиновые антибиотики из стрептомицетов. К ним чувствительны грамположи­тельные, грамотрицательные бактерии, микоплазмы, риккетсии, круп­ные вирусы, простейшие.

    Некоторые антибиотики (оливомицин, брунеомицин, актиномицины) подавляют развитие злокачественных новообразований.

    Механизм действия антибиотиков. Характер и механизм биологи­ческого действия антибиотиков обусловлены спецификой химического строения препарата и особенностями структуры и химического состава бактериальной клетки.

    Мишень для действия пенициллина – клеточная стен­ка. Стрептомицин ингибирует синтез белка благодаря избирательному взаимодействию с субчастицами рибосом. Механизм антибактериального действия левомицетина состоит в подавлении пептидил-трансферазной реакции, в результате чего прекращается синтез белка в бактериальной клетке. Антимикробное действие нистатина и других полиеновых антибиотиков обусловлено их избирательным связыванием с цитоплазматической мембраной, что при­водит к нарушению ее проницаемости.

    В настоящее время выделено и изучено уже более 5 тыс. антибиоти­ков. Практическое применение в медицине и народном хозяйстве нашли около 150 антибиотиков. Частота обнаружения новых эф­фективных антибиотиков за последнее десятилетие заметно снизилась.

    Резистентность к антибиотикам . Естественная устойчивость обусловлена отсутствием у микроорганизмов «мишени» для действия антибиотика, приобретенная устойчивость обусловлена мутациями в хромосомных генах, контролирующих синтез компонентов клеточной стенки, цитоплазматической мембраны, рибосомных или транспортных белков. Приобретенная резистентность возникает в результате переноса плазмиды (R-фактор), контролирующей множественную резистентность бактерий к антибиотикам.