Реакции с кислородом со сложными веществами таблица. Кислород: химические свойства элемента

1. Охарактеризуйте физические и химические свойства кислорода. Составьте уравнения соответствующих химических реакций. Под формулами вещества напишите их названия, а над формулами проставьте валентность элементов в соединениях.

2. Как может протекать взаимодействие веществ с кислородом?
Кислород энергично реагирует со многими веществами:
простыми – металлами и неметаллами и сложными. Химические реакции взаимодействия веществ с кислородом называются реакциями окисления. Химическая реакция, при которой происходит окисление веществ с выделением тепла и света называется реакцией горения. Продуктами реакций взаимодействия веществ с кислородом, в большинстве случаев, являются оксиды. Существует значительное число случаев окисления, которые мы не можем назвать процессами горения, ибо они протекают столь медленно, что остаются не заметными для наших органов чувств.

3. Приведите примеры медленного взаимодействия веществ с кислородом.
Существует значительное число случаев окисления, которые мы не можем назвать процессами горения, ибо они протекают толь медленно, что остаются не заметными для наших органов чувств. Лишь по прошествии определенного, часто весьма продолжительного времени мы можем уловить продукты окисления. Так, например, обстоит дело при весьма медленном окислении (ржавлении) металлов или при процессах гниения. Примеры взаимодействия веществ с кислородом без выделения света: гниение навоза, листьев, прогорание масла, окисление металлов (железные форсунки при длительном употреблении становятся тоньше и меньше), дыхание аэробных существ, т.е. дышащих кислородом, сопровождается выделением теплоты, образованием углекислого газа и воды.

4. Какие вещества называют оксидами? Напишите уравнения химических реакций, в результате которых образуются оксиды следующих химических элементов: а) кремния; б) цинка; в) бария; г) водорода; д) алюминия. Дайте названия этим оксидам.
Оксид (окисел) – бинарное соединение химического элемента с кислородом в степени окисления -2, в котором сам кислород связан только с менее электроотрицательным элементом.


5. При разложении основного карбоната меди (минерала малахита) CuCO₃·Cu(OH)₂ образуются три оксида. Напишите уравнение этой реакции.
CuCO₃·Cu(OH)₂ = 2CuO+CO₂+H₂O

6. Составьте уравнения реакций, протекающих при горении: а) фосфора; б) алюминия.
а) 4P+5O₂ = 2P₂O₅
б) 4Al+3O₂ = 2Al₂O₃

7. Определите, какое из соединений железа - Fe₂O₃ или Fe₃O₄ - богаче железом.

ТЕСТОВЫЕ ЗАДАНИЯ

1. Определите вещество по описанию: бесцветный газ, без вкуса и запаха, малорастворим в воде. При давлении 760 мм рт.ст. и температуре -218,8°С затвердевает:
Кислород.

2. Реакция горения фосфора в кислороде относится к реакциям:
Соединения.

Земная кора на 50% состоит из кислорода. Элемент также присутствует в составе минералов в виде солей и оксидов. Кислород в связанном виде входит в состав (процентное соотношение элемента около 89%). Также кислород присутствует в клетках всех живых организмов и растений. Кислород находится в воздухе в свободном состоянии в виде О₂ и его аллотропной модификации в виде озона О₃, и занимает пятую часть его состава,

Физические и химические свойства кислорода

Кислород О₂ - это газ без цвета, вкуса и запаха. Слабо растворяется в воде, кипит при температуре (-183) °С. Кислород в виде жидкости имеет голубой цвет, в твердом виде элемент образует синие кристаллы. Кислород плавится при температуре (-218,7) °С.

Жидкий кислород при комнатной температуре

При нагревании кислород вступает в реакцию с разными простыми веществами (металлами и неметаллами), образуя в результате оксиды - соединения элементов с кислородом. Взаимодействие химических элементов с кислородом называется реакцией окисления. Примеры уравнений реакции:

4Na + О₂= 2Na₂O

S + О₂ = SO₂.

С кислородом вступают во взаимодействие и некоторые сложные вещества, образуя оксиды:

СН₄ + 2О₂= СО₂ + 2Н₂О

2СО + О₂ = 2СО₂

Кислород как химический элемент получают в лабораториях и на промышленных предприятиях. в лаборатории можно несколькими способами:

  • разложением (хлората калия);
  • разложением перекиси водорода при нагревании вещества в присутствии оксида марганца в роли катализатора;
  • разложением перманганата калия.

Химическая реакция горения кислорода

Чистый кислород не обладает особыми свойствами, которых нет у кислорода воздуха, то есть имеет такие же химические и физические свойства. В воздухе кислорода содержится в 5 раз меньше, чем в таком же объеме чистого кислорода. В воздухе кислород перемешан с большими количествами азота - газа, который не горит сам и не поддерживает горение. Поэтому если около пламени кислород воздуха уже израсходован, то следующая порция кислорода будет пробиваться через азот и продукты горения. Следовательно, более энергичное горение кислорода в атмосфере объясняется более быстрой подачей кислорода к месту горения. В ходе реакции процесс соединения кислорода с горящим веществом осуществляется энергичнее и тепла выделяется больше. Чем больше подавать к горящему веществу кислорода в единицу времени, тем ярче горит пламя, выше температура и сильнее идет процесс горения.


Как происходит реакция горения кислорода? Это можно проверить на опыте. Необходимо взять цилиндр и перевернуть его вверх дном, затем подвести под цилиндр трубку с водородом. Водород, который легче воздуха, полностью заполнит цилиндр. Необходимо зажечь водород около открытой части цилиндра и ввести в него сквозь пламя стеклянную трубку, через которую вытекает газообразный кислород. У конца трубки вспыхнет огонь, при этом пламя будет спокойно гореть внутри наполненного водородом цилиндра. В ходе реакции горит не кислород, а водород в присутствии небольшого количества кислорода, выходящего из трубки.

Что возникает в результате горения водорода и какой при этом образуется окисел? Водород окисляется до воды. На стенках цилиндра постепенно осаждаются капельки конденсированных паров воды. На окисление двух молекул водорода идет одна молекула кислорода, и образуется две молекулы воды. Уравнение реакции:

2Н₂ + O₂ → 2Н₂O

Если кислород вытекает из трубки медленно, он сгорает в атмосфере водорода полностью, и опыт проходит спокойно.

Как только подача кислорода увеличивается настолько, что он не успевает сгореть полностью, его часть уходит за пределы пламени, где образуются очаги смеси водорода с кислородом, появляются отдельные, похожие на взрывы, мелкие вспышки. Смесь кислорода с водородом - это гремучий газ.

При поджигании гремучего газа происходит сильный взрыв: когда кислород соединяется с водородом, образуется вода и развивается высокая температура. Пары воды с окружающими газами сильно расширяются, возникает большое давление, при котором может разорваться не только хрупкий цилиндр, но и более прочный сосуд. Поэтому работать с гремучей смесью необходимо крайне осторожно.

Расход кислорода в процессе горения

Для опыта стеклянный кристаллизатор объемом в 3 литра необходимо заполнить на 2/3 водой и добавить столовую ложку едкого натра или едкого калия. Воду подкрасить фенолфталеином или другим подходящим красителем. В небольшую колбочку насыпать песка и вертикально вставить в него проволоку с закрепленной на конце ватой. Колбочка ставится в кристаллизатор с водой. Вата остается выше поверхности раствора на 10 см.

Слегка смочить ватку спиртом, маслом, гексаном или другой горючей жидкостью и поджечь. Аккуратно накрыть горящую ватку 3-литровым бутылем и опустить его ниже поверхности раствора щелочи. В процессе горения кислород переходит в воду и . В результате реакции раствор щелочи в бутыле поднимается. Ватка скоро гаснет. Бутыль следует осторожно поставить на дно кристаллизатора. В теории бутыль должен заполниться на 1/5, так как в воздухе содержится 20.9 % кислорода. При горении кислород переходит в воду и углекислый газ CO₂, поглощаемый щелочью. Уравнение реакции:

2NaOH + CO₂ = Na₂­CO₃ + H₂O

На практике горение прекратится раньше, чем израсходуется весь кислород; часть кислорода переходит в угарный газ, который не поглощается щелочью, а часть воздуха в результате термического расширения покидает бутыль.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Введение

Каждый день мы вдыхаем такой необходимый нам воздух. А вы никогда не задумывались о том, из чего, точнее из каких веществ, состоит воздух? Больше всего в нем азота (78%), далее идет кислород (21%) и инертные газы (1%). Хоть кислород и не составляет самую основную часть воздуха, но без него атмосфера была бы непригодной для жизни. Благодаря ему на Земле существует жизнь, ведь азот и вместе и по отдельности губительны для человека. Давайте рассмотрим свойства кислорода.

Физические свойства кислорода

В воздухе кислород просто так не различишь, так как в обычных условиях он является газом без вкуса, цвета и запаха. Но кислород можно искусственным путем перевести в другие агрегатные состояния. Так, при -183 о С он становится жидким, а при -219 о С твердеет. Но твердый и жидкий кислород может получить только человек, а в природе он существует лишь в газообразном состоянии. выглядит так (фото). А твердый похож на лед.

Физические свойства кислорода - это еще и строение молекулы простого вещества. Атомы кислорода образуют два таких вещества: кислород (О 2) и озон (О 3). Ниже показана модель молекулы кислорода.

Кислород. Химические свойства

Первое, с чего начинается химическая характеристика элемента - его положение в периодической системе Д. И. Менделеева. Итак, кислород находится во 2 периоде 6 группе главной подгруппе под номером 8. Его атомная масса - 16 а.е.м, он является неметаллом.

В неорганической химии его бинарные соединения с другими элементами объединили в отдельный - оксиды. Кислород может образовывать химические соединения как с металлами, так и с неметаллами.

Поговорим о его получении в лабораториях.

Химическим путем кислород можно получить с помощью разложения перманганата калия, пероксида водорода, бертолетовой соли, нитратов активных металлов и оксидов тяжелых металлов. Рассмотрим уравнения реакций при применении каждого из этих способов.

1. Электролиз воды:

Н 2 О 2 = Н 2 О + О 2

5. Разложение оксидов тяжелых металлов (например, оксида ртути):

2HgO = 2Hg + O 2

6. Разложение нитратов активных металлов (например, нитрата натрия):

2NaNO 3 = 2NaNO 2 + O 2

Применение кислорода

С химическими свойствами мы закончили. Теперь пора поговорить о применении кислорода в жизни человека. Он нужен для сжигания топлива в электрических и тепловых станциях. Его используют для получения стали из чугуна и металлолома, для сварки и резки металла. Кислород нужен для масок пожарных, для баллонов водолазов, применяется в черной и цветной металлурги и даже в изготовлении взрывчатых веществ. Также в пищевой промышленности кислород известен как пищевая добавка Е948. Кажется, нет отрасли, где бы он не использовался, но самую важную роль он играет в медицине. Там он так и называется - "кислород медицинский". Для того чтобы кислород был пригоден для использования, его предварительно сжимают. Физические свойства кислорода способствуют тому, что его можно сжать. В подобном виде он хранится внутри баллонов, похожих на такие.

Его используют в реанимации и на операциях в аппаратуре для поддержания жизненных процессов в организме больного пациента, а также при лечении некоторых болезней: декомпрессионной, патологий желудочно-кишечного тракта. С его помощью врачи каждый день спасают множество жизней. Химические и физические свойства кислорода способствуют тому, что его используют так широко.

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O . Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород]. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Нахождение в природе.природный кислород состоит из 3 стабильных изотопов о16,о17,о18.

Кислород в виде простого вещества о2 входит в состав атмосферного воздуха.=21% В связанном виде элемент кислорода составная часть воды различных минералов многих орг веществ.

ПОЛУЧЕНИЕ. В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMNO4 = K2MnO4 + MnO2 + O2

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

2H2O2 =MnO2=2H2O + O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3 = 2KCl + 3O2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2 + 2CO2 = 2Na2CO3 + O2

ХИМИЧЕСКИЕ СВ_ВА. Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

4Li + O2 = 2Li2O

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

CH3CH2OH + 3O2 = 2CO2 + 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

CH3CH2OH +O2 = CH3COOH + H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au иинертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

2Na + O2 = Na2O2

Некоторые оксиды поглощают кислород:

2BaO + O2 = 2BaO2

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Na2O2 + O2 = 2NaO2

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Неорганические озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

2KOH + 3O3 = 2KO3 + H2O +2O2

В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

PtF6 +O2 = O2PtF6

Фториды кислорода Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

2F2 + 2NaOH = 2NaF + H2O + OF2

Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3 ОЗОН. Озо́н - состоящая из трёхатомных молекул O3аллотропная модификация кислорода. При нормальных условиях - голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.

ХИМ.СВ-ВА Озонa - мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины ииридия) до их высших степеней окисления. Окисляет многие неметаллы. Продуктом реакции в основном является кислород.

2Cu2+ + 2H3O+ + O3 = 2Cu3+ + 3H2O + O2

Озон повышает степень окисления оксидов:

NO + O3 =NO2 + O2

Эта реакция сопровождается хемилюминесценцией. Диоксид азота может быть окислен до азотного ангидрида:

2NO2 + O3 = N2O5 + O2

Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:

2C +2O3 = 2CO2 + O2

Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

2NH3 + 4O3 = NH4NO3 + 4O2 + H2O

Озон реагирует с водородом с образованием воды и кислорода:

O3 + H2 = O2 + H2O

Озон реагирует с сульфидами с образованием сульфатов:

PbS + 4O3 = PbSO4 + 4O2

С помощью озона можно получить Серную кислоту как из элементарной серы, так и из диоксида серы:

S + H2O + O3 = H2SO4

3SO2 + 3H2O + O3 = 3H2SO4

Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

3SnCl2 + 6HCl + O3 = 3SnCl4 + 3H2O

В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

H2S + O3 = SO2 + H2O

В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:

H2S + O3 = S + O2 + H2O

3H2S + 4O3 = 3H2SO4

Обработкой озоном раствора иода в холодной безводной хлорной кислоте может быть получен перхлорат иода(III):

I2 + 6HClO4 +O3 = 2I(ClO4)3 + 3H2O

Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO2, ClO2 и O3:

2NO2 + 2ClO2 + 2O2 = 2NO2ClO4 + O2

Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:

3C3N2 + 4O3 = 12CO + 3N2

Озон может вступать в химические реакции и при низких температурах. При 77 K (-196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего:

H + O3 = HO2 . + O

2HO2 . = H2O2 +O2

Озон может образовывать неорганические озониды, содержащие анион O3−. Эти соединения взрывоопасны и могут храниться только при низких температурах. Известны озониды всех щелочных металлов (кроме франция). KO3, RbO3, и CsO3 могут быть получены из соответствующих супероксидов:

KO2 + O3 = KO3 + O2

Озонид калия может быть получен и другим путём из гидроксида калия:

2KOH + 5O3 = 2KO3 + 5O2 + H2O

NaO3 и LiO3 могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na+ или Li+:

CsO3 + Na+ = Cs+ + NaO3

Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция:

3Ca + 10NH3 + 7O3 = Ca * 6NH3 + Ca(OH)2 + Ca(NO3)2 + 2NH4O3 + 3O2 + 2H2O

Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть отделён фильтрованием:

2Mn2+ + 2O3 + 4H2O = 2MnO(OH)2 + 2O2 + 4H+

Озон превращает токсичные цианиды в менее опасные цианаты:

CN- + O3 = CNO- + O2

Озон может полностью разлагать мочевину :

(NH2)2CO + O3 = N2 + CO2 + 2H2O

Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующимгидротриоксидам.

ПОЛУЧЕНИЕ. Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

В лаборатории озон можно получить взаимодействием охлаждённой концентрированной серной кислоты с пероксидом бария:

3H2SO4 + 3BaO2 = 3BaSO4 + O3 + 3H2O

Пероксиды - сложные вещества, в которых атомы кислорода соединены друг с другом. Пероксиды легко выделяют кислород. Для неорганических веществ рекомендуется использовать термин пероксид, для органических веществ и сегодня в русском языке часто используют термин перекись. Пероксиды многих органических веществ взрывоопасны (пероксид ацетона), в частности, они легко образуютсяфотохимически при длительном освещении эфиров в присутствии кислорода. Поэтому перед перегонкой многие эфиры (диэтиловый эфир, тетрагидрофуран) требуют проверки на отсутствие пероксидов.

Пероксиды замедляют синтез белка в клетке.

В зависимости от структуры различают собственно пероксиды, надпероксиды, неорганические озониды. Неорганические пероксиды в виде бинарных или комплексных соединений известны почти для всех элементов. Пероксиды щелочных и щелочноземельных металлов реагируют с водой, образуя соответствующий гидроксид и пероксид водорода.

Органические пероксиды подразделяются на диалкилпероксиды, алкилгидропероксиды, диацилпероксиды, ацилгидропероксиды (пероксокарбоновые кислоты), циклические пероксиды. Органические пероксиды термически неустойчивы и часто взрывоопасны. Используются как источники свободных радикалов в органическом синтезе и промышленности

Галогени́ды (галоиды) - соединения галогенов с другими химическими элементами или радикалами. При этом галоген, входящий в соединение, должен быть электроотрицательным; так, оксид брома не является галогенидом.

По участвующему в соединении галогену галогениды также называются фторидами, хлоридами, бромидами, иодидами и астатидами. Наиболее известны под этим названием галогениды серебра благодаря массовому распространению плёночной галогеносеребряной фотографии.

Соединения галогенов между собой называются интергалогенидами, или межгалоидными соединениями (например, пентафторид иода IF5).

В галогенидах галоген имеет отрицательную степень окисления, а элемент - положительную.

Галогенид-ион - отрицательно заряженный атом галогена.

Открытие кислорода произошло дважды, во второй половине XVIII столетия с разницей в несколько лет. В 1771 году кислород получил швед Карл Шееле, нагревая селитру и серную кислоту. Полученный газ был назван «огненным воздухом». В 1774 английский химик Джозеф Пристли проводил процесс разложения оксида ртути в полностью закрытом сосуде и открыл кислород, но принял его за ингредиент воздуха. Только после того, как Пристли поделился своей находкой с французом Антуаном Лавуазье, стало понятно, что открыт новый элемент (calorizator). Пальма первенства данного открытия принадлежит Пристли потому, что Шееле опубликовал свой научный труд с описанием открытия лишь в 1777 году.

Кислород является элементом XVI группы II периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 8 и атомную массу 15,9994. Принято обозначать кислород символом О (от латинского Oxygenium - порождающий кислоту). В русском языке название кислород стало производным от кислоты , термина, который был введён М.В. Ломоносовым.

Нахождение в природе

Кислород является самым распространённым элементом по нахождению в земной коре и Мировом океане. Соединения кислорода (в основном - силикаты) составляют не менее 47% массы земной коры, кислород вырабатывается в процессе фотосинтеза лесами и всеми зелёными растениями, большая часть приходится на фитопланктон морских и пресных вод. Кислород - обязательная составная часть любых живых клеток, также находится в большинстве веществ органического происхождения.

Физические и химические свойства

Кислород - лёгкий неметалл, состоит в группе халькогенов, имеет высокую химическую активность. Кислород, как простое вещество, представляет собой газ без цвета, запаха и вкуса, имеет жидкое состояние - светло-голубая прозрачная жидкость и твёрдое - светло-синие кристаллы. Состоит из двух атомов кислорода (обозначается формулой О₂).

Кислород участвует в окислительно-восстановительных реакциях. Живые существа дышат кислородом воздуха. Широко используется кислород в медицине. При сердечнососудистых заболеваниях, для улучшения обменных процессов, в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном.

Кислород - основа основ жизнедеятельности всех живых организмов на Земле, является основным биогенным элементом. Находится в составе молекул всех важнейших веществ, которые отвечают за структуру и функции клеток (липиды, белки, углеводы, нуклеиновые кислоты). Каждый живой организм содержит гораздо больше кислорода, чем какого-либо элемента (до 70%). Для примера, организм взрослого среднестатического человека массой 70 кг содержит 43 кг кислорода.

Кислород поступает в живые организмы (растения, животные и человек) благодаря органам дыхания и поступлению воды. Помня о том, что в организме человека самый главный орган дыхания - это кожа, становится понятно, сколько кислорода может получать человек, особенно летом на берегу водоёма. Определить потребность человека в кислороде достаточно сложно, ведь она зависит от многих факторов - возраст, пол, масса и поверхность тела, система питания, внешняя среда и т.д.

Применение кислорода в жизни

Кислород применяется практически повсеместно - от металлургии до производства ракетного топлива и взрывчатых веществ, применяемых для дорожных работах в горах; от медицины до пищевой промышленности.

В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки , как пропеллент и упаковочный газ.