Сообщение генетический код. Однозначность генетического кода проявляется в том что

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

Лекция 5. Генетический код

Определение понятия

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.

Поскольку ДНК непосредственного участия в синтезе белка не принимает, то код записывается на языке РНК. В РНК вместо тимина входит урацил.

Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Определение: триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.

Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом:

2 АК по 1 триплету = 2.

9 АК по 2 триплета = 18.

1 АК 3 триплета = 3.

5 АК по 4 триплета = 20.

3 АК по 6 триплетов = 18.

Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Определение:

Ген - это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tPHK , r РНК или sPHK .

Гены tPHK , rPHK , sPHK белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х триплетов, кодирующих терминирующие кодоны РНК, или стоп-сигналы. В мРНК они имеют следующий вид: UAA , UAG , UGA . Они терминируют (оканчивают) трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. (См. лекцию 8) Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG . У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.
Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961 г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактность.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген.

Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код тршплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

6. Универсальность.

Генетический код един для всех живущих на Земле существ.

В 1979 г. Беррел открыл идеальный код митохондрий человека.

Определение:

«Идеальным» называется генетический код, в котором выполняется правило вырожденности квазидублетного кода: Если в двух триплетах совпадают первые два нуклеотида, а третьи нуклеотиды относятся к одному классу (оба - пурины или оба - пиримидины), то эти триплеты кодируют одну и ту же аминокислоту.

Из этого правила в универсальном коде есть два исключения. Оба отклонения от идеального кода в универсальном касаются принципиальных моментов: начала и конца синтеза белка:

Кодон

Универсальный

код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

STOP

STOP

С UA

А G А

STOP

STOP

230 замен не меняют класс кодируемой аминокислоты. к рываемость.

В 1956 г. Георгий Гамов предложил вариант перекрываемого кода. Согласно Гамовскому коду, каждый нуклеотид, начиная с третьего в гене, входит в состав 3-х кодонов. Когда генетический код был расшифрован, оказалось, что он неперекрываем, т.е. каждый нуклеотид входит в состав лишь одного кодона.

Достоинства перекрываемого генетического кода: компактность, меньшая зависимость структуры белка от вставки или делеции нуклеотида.

Недостаток: большая зависимость структуры белка от замены нуклеотида и ограничение на соседей.

В 1976 г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D . Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D . Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

Информационная емкость ДНК

На Земле живет 6 миллиардов человек. Наследственная информация о них
заключена в 6x10 9 сперматозоидах. По разным оценкам у человека от 30 до 50
тысяч генов. У всех людей ~ 30x10 13 генов или 30x10 16 пар нуклеотидов, которые составляют 10 17 кодонов. Средняя книжная страница содержит 25x10 2 знаков. ДНК 6x10 9 сперматозоидов содержит информацию, равную по объему примерно

4x10 13 книжных страниц. Эти страницы заняли бы объем 6-и зданий НГУ. 6x10 9 сперматозоидов занимают половину наперстка. Их ДНК занимает менее четверти наперстка.

При необходимости синтеза белков перед клеткой возникает одна серьезная проблема – информация в ДНК хранится в виде последовательности, закодированной 4 символами (нуклеотидами), а белки состоят из 20 различных символов (аминокислот). Если попытаться использовать сразу все четыре символа для кодировки аминокислот, то получится всего 16 сочетаний, в то время как протеиногенных аминокислот насчитывается 20. Не хватает...

На этот счет существует пример гениального мышления:

"Возьмем, например, колоду игральных карт, в которой мы обращаем внимание только на масть карты. Сколько триплетов одного и того же вида можно получить? Четыре, конечно: трое червей, трое бубен, трое пик и трое треф. Сколько триплетов с двумя картами одной и той же масти и одной другой? Пусть мы имеем четыре выбора для третьей карты. Поэтому мы имеем 4x3 = 12 возможностей. В дополнение мы имеем четыре триплета со всеми тремя различными картами. Итак, 4+12+4=20, а это и есть точное число аминокислот, которое мы хотели получить" (Георгий Гамов, англ. George Gamow, 1904-1968г, советский и американский физик-теоретик, астрофизик и популяризатор науки).

Действительно, экспериментами доказано, что для каждой аминокислоты имеется по два обязательных нуклеотида и третий вариабельный, менее специфичный ("эффект качания "). В случае, если брать три символа из четырех, то получится 64 комбинации, что намного перекрывает число аминокислот. Таким образом выяснено, что любая аминокислота кодируется тремя нуклеотидами. Эта тройка получила название кодон . Их, как уже сказано, существует 64 варианта. Три из них не кодируют никакой аминокислоты, это так называемые "нонсенс-кодоны " (франц. non-sens - бессмыслица) или "стоп-кодоны".

Генетический код

Генетический (биологический) код – это способ кодирования информации о строении белков в виде нуклеотидной последовательности. Он предназначен для перевода четырехзначного языка нуклеотидов (А, Г, У, Ц) в двадцатизначный язык аминокислот. Он обладает характерными особенностями:

  • Триплетность – три нуклеотида формируют кодон, кодирующий аминокислоту. Всего насчитывают 61 смысловой кодон.
  • Специфичность (или однозначность ) – каждому кодону соответствует только одна аминокислота.
  • Вырожденность – одной аминокислоте может соответствовать несколько кодонов.
  • Универсальность – биологический код одинаков для всех видов организмов на Земле (однако в митохондриях млекопитающих есть исключения).
  • Колинеарность – последовательность кодонов соответствует последовательности аминокислот в кодируемом белке.
  • Неперекрываемость – триплеты не накладываются друг на друга, располагаясь рядом.
  • Отсутствие знаков препинания – между триплетами нет дополнительных нуклеотидов или каких-либо иных сигналов.
  • Однонаправленность – при синтезе белка считывание кодонов идет последовательно, без пропусков или возвратов назад.

Однако ясно, что биологический код не может проявить себя без дополнительных молекул, которые выполняют переходную функцию или функцию адаптора .

Адапторная роль транспортных РНК

Транспортные РНК являются единственным посредником между 4-х буквенной последовательностью нуклеиновых кислот и 20-ти буквенной последовательностью белков.

Каждая транспортная РНК имеет определенную триплетную последовательность в антикодоновой петле (антикодон ) и может присоединить только такую аминокислоту, которая соответствует этому антикодону. Именно от наличия того или иного антикодона в тРНК зависит, какая аминокислота включится в белковую молекулу, т.к. ни рибосома, ни мРНК не узнают аминокислоту.

Таким образом, адапторная роль тРНК заключается:

  1. в специфичном связывании с аминокислотами,
  2. в специфичном, согласно кодон-антикодоновому взаимодействию, связывании с мРНК,
  3. и, как результат, во включении аминокислот в белковую цепь в соответствии с информацией мРНК.

Присоединение аминокислоты к тРНК осуществляется ферментом аминоацил-тРНК-синтетазой , имеющей специфичность одновременно к двум соединениям: какой-либо аминокислоте и соответствующей ей тРНК. Для реакции требуется две макроэргические связи АТФ. Аминокислота присоединяется к 3"-концу акцепторной петли тРНК через свою α-карбоксильную группу, и связь между аминокислотой и тРНК становится макроэргической . α-Аминогруппа остается свободной.

Реакция синтеза аминоацил-тРНК

Так как существует около 60 различных тРНК, то некоторым аминокислотам соответствует по две или более тРНК. Различные тРНК, присоединяющие одну аминокислоту, называют изоакцепторными .

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

Генетический код - это способ кодирования последовательности аминокислот в молекуле белка с помощью последовательности нуклеотидов в молекуле нуклеиновой кислоты. Свойства генетического кода вытекают из особенностей этого кодирования.

Каждой аминокислоте белка сопоставляется в соответствие три подряд идущих нуклеотида нуклеиновой кислоты - триплет , или кодон . Каждый из нуклеотидов может содержать одно из четырех азотистых оснований. В РНК это аденин (A), урацил (U), гуанин (G), цитозин (C). По-разному комбинируя азотистые основания (в данном случае содержащие их нуклеотиды) можно получить множество различных триплетов: AAA, GAU, UCC, GCA, AUC и т. д. Общее количество возможных комбинаций - 64, т. е. 43.

В состав белков живых организмов входит около 20 аминокислот. Если бы природа «задумала» кодировать каждую аминокислоту не тремя, а двумя нуклеотидами, то разнообразия таких пар не хватило бы, так как их оказалось бы всего 16, т.е. 42.

Таким образом, основное свойство генетического кода - его триплетность . Каждая аминокислота кодируется тройкой нуклеотидов.

Поскольку возможных разных триплетов существенно больше, чем используемых в биологических молекулах аминокислот, то в живой природе было реализовано такое свойство как избыточность генетического кода. Многие аминокислоты стали кодироваться не одним кодоном, а несколькими. Например, аминокислота глицин кодируется четырьмя различными кодонами: GGU, GGC, GGA, GGG. Избыточность также называют вырожденностью .

Соответствие между аминокислотами и кодонами отражают в виде таблиц. Например, таких:

По отношению к нуклеотидам генетический код обладает таким свойством как однозначность (или специфичность ): каждый кодон соответствует только одной аминокислоте. Например, кодоном GGU можно закодировать только глицин и больше никакую другую аминокислоту.

Еще раз. Избыточность — это про то, что несколько триплетов могут кодировать одну и ту же аминокислоту. Специфичность — каждый конкретный кодон может кодировать только одну аминокислоту.

В генетическом коде нет специальных знаков препинания (если не считать стоп-кодонов, обозначающих окончание синтеза полипептида). Функцию знаков препинания выполняют сами триплеты - окончание одного обозначает, что следом начнется другой. Отсюда следуют следующие два свойства генетического кода: непрерывность и неперекрываемость . Под непрерывность понимают считывание триплетов сразу друг за другом. Под неперекрываемостью - то, что каждый нуклеотид может входить в состав только одного триплета. Так первый нуклеотид следующего триплета всегда стоит после третьего нуклеотида предшествующего триплета. Кодон не может начаться со второго или третьего нуклеотида предшествующего кодона. Другими словами, код не перекрывается.

Генетический код обладает свойством универсальности . Он един для всех организмов на Земле, что говорит о единстве происхождения жизни. При этом встречаются очень редкие исключения. Например, некоторые триплеты митохондрий и хлоропластов кодируют другие, а не обычные для них, аминокислоты. Это может говорить о том, что на заре развития жизни существовали немного различные вариации генетического кода.

Наконец, генетический код обладает помехоустойчивостью , которая является следствием такого его свойства как избыточность. Точечные мутации, иногда происходящие в ДНК, обычно приводят к замене одного азотистого основания на другое. При этом изменяется триплет. Например, было AAA, после мутации стало AAG. Однако подобные изменения не всегда приводят к изменению аминокислоты в синтезируемом полипептиде, так как оба триплета из-за свойства избыточности генетического кода могут соответствовать одной аминокислоте. Учитывая, что мутации чаще вредны, свойство помехоустойчивости полезно.

Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический код - это способ кодирования последовательности аминокислот полипептидас помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНКили комплиментарного ей участка ДНК, на котором синтезируется иРНК).

Встречаются другие определения.

Генетический код - это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код - это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.

В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность.

Неверно считать, что у одного организма или вида код один, а у другого - другой. Генетический код - это то, как кодируются аминокислоты нуклеотидами (т. е. принцип, механизм); он универсален для всего живого, одинаков для всех организмов.

Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах.

В данных случаях обычно имеется в виду геном человека, организма и др.

Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков.

Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав. Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов. Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.

Как кодируются аминокислоты нуклеотидами

1) Нуклеиновые кислоты (ДНК и РНК) - это полимеры, состоящие из нуклеотидов.

В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).

При рассмотрении генетического кода принимают во внимание только азотистые основания.

Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:

Комплиментарный данному коду участок иРНК будет таким:

2) Белки (полипептиды) - это полимеры, состоящие из аминокислот.

В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три - сокращение от названия аминокислоты).

Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):

3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв.

Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.

Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.

Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот.

Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC).

[Скобки используются для удобства восприятия.] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).

Из математики формула, позволяющая определить количество комбинаций, выглядит так: ab = n.

Здесь n - количество разных комбинаций, a - количество букв алфавита (или основание системы счисления), b - количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 42 = 16.

Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 43 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т.

д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.

Именно трехбуквенный код используется в генетическом коде . Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном ).

Каждой аминокислоте сопоставляется определенный триплет нуклеотидов.

Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.

Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA).

Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами ).

Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).

Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов.

По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй - по заданной аминокислоте соответствующие ей триплеты.

Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:

Разобьем последовательность нуклеотидов на триплеты:

Сопоставим каждому триплету кодируемую им аминокислоту полипептида:

Метионин - Аспаргиновая кислота - Серин - Треонин - Триптофан - Лейцин - Лейцин - Лизин - Аспарагин - Глутамин

Последний триплет является стоп-кодоном.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство - это триплетность .

Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость . Нуклеотид, входящий в один триплет, не может входить в другой.

То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота.

Например, триплет AGU кодирует аминокислоту серин и больше никакую другую.

Генетический код

Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода.

Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

Устойчивость как приспособление растений к условиям существования. Основные реакции растений на действие неблагоприятных факторов.

Устойчивость растений – способность противостоять воздействию экстремальных факторов среды (почвенная и воздушная засуха).

Однозначность ге-не-ти-че-ско-го кода про-яв-ля-ет-ся в том, что

Это свойство выработано в процессе эволюции и генетически закрепилось. В районах с неблагоприятными условиями сформировались устойчивые декоративные формы и местные сорта культурных растений – засухоустойчивых. Присущий растениям тот или иной уровень устойчивости выявляется лишь при действии экстемальных факторов среды.

В рез-те наступления такого фактора наступает фаза раздражения – резкое отклонение от нормы ряда физиологических параметров и быстрое возвращение их к норме. Затем происходит изменение интенсивности обмена веществ и повреждение внутриклеточных структур. При этом подавляются все синтетические, активизируются все гидролитические и снижается общая энергообеспеченность организма. Если действие фактора не превышает порогового значения, наступает фаза адаптации.

Адаптированное растение меньше реагирует на повторное или усиливающееся воздействие экстрем.фактора. На организменном уровне к механизмам адаптации добавляются взаимодействие м/у органами. Ослабление передвижения по растению потоков воды, минеральных и органических соединений обостряет конкуренцию между органами, прекращается их рост.

Био.устойчивость у растений опред. макс.значением экстремального фактора при котором растения еще образуют жизнеспособные семена. Агрономическая устойчивость определяется степенью снижения урожая. Растения характеризуются по их устойчивости к конкретному типу экстремального фактора – зимостояние, газоустойчивые, солеустойчивые, засухоустойчивые.

Тип круглые черви, в отличие от плоских обладают первичной полостью тела – схизоцелем, образующегося за счет разрушения паренхимы, заполняющей промежутки между стенкой тела и внутренними органами – его функция – транспортная.

В ней поддерживается гомеостаз. Форма тела круглая в поперечнике. Покровы кутикулизированы. Мускулатура представлена слоем продольных мышц. Кишечник сквозной и состоит из 3-х отделов: переднего, среднего и заднего. Ротовое отверстие расположено на брюшной поверхности переднего конца тела. Глотка обладает характерным трехгранным просветом. Выделительная система представлена протонефридиями или особыми кожными – гиподермальными железами. Большинство видов раздельнополые, размножение лишь половое.

Развитие прямое, реже с метаморфозом. У них постоянство клеточного состава тела и отсутствие способности к регенерации. Передний отдел кишечника состоит из ротовой полости, глотки, пищевода.

Среднего и заднего отдела не имеют. Выделительная система состоит 1-2 гигантских клеток гиподермы. Продольные выделительные каналы залегают в боковых валиках гиподермы.

Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов. Терминирующие кодоны. Понятие о генетической супрессии.

Представление о том, что в гене закодирована информация в первичной структуре белка, было конкретизировано Ф.

Криком в его гипотезе последовательности, согласно которой последовательность элементов гена определяет последовательность аминокислотных остатков в полипептидной цепи. Справедливость гипотезы последовательности доказывает колинеарность структур гена и кодируемого им полипептида. Наиболее существенным достижением в 1953 г. было соображение о том. Что код скорее всего триплетен.

; пары оснований днк: А-Т, Т-А, G-C, C-G — могут закодировать лишь 4 аминокислоты, если каждая пара соответствует одной аминокислоте. Как известно, в белки входят 20 основных аминокислот. Если предположить, что каждой аминокислоте соответствует 2 пары оснований, то можно закодировать 16 аминокислот (4*4) — этого опять недостаточно.

Если же код триплетен, то из 4-х пар оснований можно составить 64 кодона (4*4*4), чего с избытком хватает для кодирования 20 аминокислот. Крик с сотрудниками предполагали, что код триплетен, между кодонами нет «запятых», т. е. разделяющих знаков; считывание кода в пределах гена происходит с фиксированной точки в одном направлении. Летом 1961 г. Киренберг и Маттей сообщили о расшифровке первого кодона и предположили метод установления состава кодонов в бесклеточной системе белкового синтеза.

Так, кодон для фенилаланина был расшифрован как UUU в иРНК. Далее, в результате применения методов, разработанных Кораной, Ниренбергом и Ледером в 1965 г.

был составлен кодовый словарь в его современном виде. Таким образом, получение у фагов Т4 мутаций, вызванных выпадением или добавлением оснований явилось доказательством триплетности кода (1 свойство). Эти выпадения и добавления, приводящие к сдвигам рамки при «чтении» кода устранялось только восстановлением правильности кода, это предотвращало появление мутантов. Эти эксперименты показали также, что триплеты не перекрываются, т. е. каждое основание может принадлежать только одному триплету.(2 свойство).

Для большинства аминокислот имеется по нескольку кодонов. Код, в котором число аминокислот меньше числа кодонов называют вырожденным(3 свойство), т.

е. данная аминокислота может кодироваться более чем одним триплетом. Кроме того, три кодона вообще не кодируют никакую аминокислоту («нонсенс — кодоны») и действуют как «стоп — сигнал». Стоп — кодон — это концевая точка функциональной единицы ДНК — цистрона. Терминирующие кодоны одинаковы у всех видов и представлены как UAA, UAG, UGA. Примечательная особенность кода в том, что он универсален (4 свойство).

У всех живых организмов одни и те же триплеты кодируют одни и те же аминокислоты.

Существование трех типов мутантных кодонов — терминаторов и их супрессия были показаны у E.coli и для дрожжей. Обнаружение генов — супрессоров, «осмысливающих» нонсенс — аллели разных генов, указывает на то, что трансляция генетического кода может меняться.

Мутации, затрагивающие антикодон тРНК, меняют их кодоновую специфичность и создают возможность для супрессии мутаций на уровне трансляции. Супрессия на уровне трансляции может происходить вследствие мутаций в генах, кодирующих некоторые белки рибосом. В результате этих мутаций рибосома «ошибается», например в считывании нонсенс — кодонов и «осмысливает» их за счет некоторых немутантных тРНК. Наряду с генотипической супрессией, действующей на уровне трансляции, возможна и фенотипическая супрессия нонсенс — аллелей: при понижении температуры, при действии на клетки аминогликозидных антибиотиков, связывающихся с рибосомами, например стрептомицина.

22. Размножение высших растений: вегетативное и бесполое. Спорообразование, строение спор, равно- и разноспоровость.Размножение как свойство живой материи т.е способность особи дать начало себе подобной, существовало и на ранних этапах эволюции.

Формы размножения можно разделить на 2 вида: бесполое и половое. Собственно бесполое размножение осуществляется без участия половых клеток, с помощью специализированных клеток – спор. Они образуются в органах бесполого размножения – спорангиях в результате митотического деления.

Спора при своем прорастании воспроизводит новую особь, сходную с материнской, за исключением спор семенных растений, у к-рых спора утратила функцию размножения и расселения. Споры могут образовываться и путем редукционного деления, при этом наружу высыпаются одноклеточные споры.

Размножение растений с помощью вегетативных (частью побега, листом, корнем) или делением одноклеточных водорослей пополам называется вегетативным (луковица, черенки).

Половое размножение осуществляется специальными половыми клетками – гаметами.

Гаметы образуются в результате мейоза, бывают женские, и мужские. В результате их слияния появляется зигота, из которой в дальнейшем развивается новый организм.

Растения различаются типами гамет. У некоторых одноклеточных организмов в определенное время функционирует как гамета. Разнополые организмы (гаметы) сливаются – этот половой процесс называется хологамией. Если мужские и женские гаметы морфологически сходны, подвижны – это изогаметы.

А половой процесс – изогамным . Если женские гаметы несколько крупнее и менее подвижные чем мужские, то это гетерогаметы, а процесс – гетерогамия. Оогамия – женские гаметы очень крупные и неподвижные, мужские гаметы – мелкие и подвижные.

12345678910Следующая ⇒

Генетический код – соответствие между триплетами ДНК и аминокислотами белков

Необходимость кодирования структуры белков в линейной последовательности нуклеотидов мРНК и ДНК продиктована тем, что в ходе трансляции:

  • нет соответствия между числом мономеров в матрице мРНК и продукте — синтезируемом белке;
  • отсутствует структурное сходство между мономерами РНК и белка.

Это исключает комплементарное взаимодействие между матрицей и продуктом — принцип, по которому осуществляется построение новых молекул ДНК и РНК в ходе репликации и транскрипции.

Отсюда становится ясным, что должен существовать "словарь", позволяющий выяснить, какая последовательность нуклеотидов мРНК обеспечивает включение в белок аминокислот в заданной последовательности. Этот "словарь" получил название генетического, биологического, нуклеотидного, или аминокислотного кода. Он позволяет шифровать аминокислоты, входящие в состав белков, с помощью определённой последовательности нуклеотидов в ДНК и мРНК. Для него характерны определённые свойства.

Триплетность. Одним из основных вопросов при выяснении свойств кода был вопрос о числе нуклеотидов, которое должно определять включение в белок одной аминокислоты.

Было установлено, что кодирующими элементами в шифровании аминокислотной последовательности действительно являются тройки нуклеотидов, или триплеты, которые получили название "кодоны".

Смысл кодонов .

Удалось установить, что из 64 кодонов включение аминокислот в синтезирующуюся полипептидную цепь шифрует 61 триплет, а 3 остальных — UAA, UAG, UGA не кодируют включение в белок аминокислот и первоначально были названы бессмысленными, или нон-сенс-кодонами. Однако в дальнейшем было показано, что эти триплеты сигнализируют о завершении трансляции, и поэтому их стали называть терминирующими, или стоп-кодонами.

Кодоны мРНК и триплеты нуклеотидов в кодирующей нити ДНК с направлением от 5′ к 3′-концу имеют одинаковую последовательность азотистых оснований, за исключением того, что в ДНК вместо урацила (U), характерного для мРНК, стоит тимин (Т).

Специфичность .

Каждому кодону соответствует только одна определённая аминокислота. В этом смысле генетический код строго однозначен.

Таблица 4-3.

Однозначность – одно из свойств генетического кода, проявляется в том, что …

Основные компоненты белоксинтезирующей системы

Необходимые компоненты Функции
1 . Аминокислоты Субстраты для синтеза белков
2. тРНК тРНК выполняют функцию адаптеров. Они акцепторным концом взаимодействуют с аминокислотами, а антикодоном — с кодоном мРНК.
3.

Аминоацил-тРНК синтетазы

Каждая аа-тРНК-синтетаза катализирует реакцию специфического связывания одной из 20 аминокислот с соответствующей тРНК
4.мРНК Матрица содержит линейную последовательность кодонов, определяющих первичную структуру белков
5. Рибосомы Рибонуклеопротеиновые субклеточные структуры, являющиеся местом синтеза белков
6. Источники энергии
7. Белковые факторы инициации, элонгации, терминации Специфические внерибосомные белки, необходимые для процесса трансляции (12 факторов инициации: elF; 2 фактора элонгации: eEFl, eEF2, и факторы терминации: eRF)
8.

Ионы магния

Кофактор, стабилизирующий структуру рибосом

Примечания: elF (eukaryotic initiation factors ) — факторы инициации; eEF (eukaryotic elongation factors ) — факторы элонгации; eRF (eukaryotic releasing factors ) — факторы терминации.

Вырожденность . В мРНК и ДНК имеет смысл 61 триплет, каждый из которых кодирует включение в белок одной из 20 аминокислот.

Из этого следует, что в информационных молекулах включение в белок одной и той же аминокислоты определяют несколько кодонов. Это свойство биологического кода получило название вырожденности.

У человека одним кодоном зашифрованы только 2 аминокислоты — Мет и Три, тогда как Лей, Сер и Apr — шестью кодонами, а Ала, Вал, Гли, Про, Тре — четырьмя кодонами (табл.

Избыточность кодирующих последовательностей — ценнейшее свойство кода, так как она повышает устойчивость информационного потока к неблагоприятным воздействиям внешней и внутренней среды. При определении природы аминокислоты, которая должна быть включена в белок, третий нуклеотид в кодоне не имеет столь важного значения, как первые два. Как видно из табл. 4-4, для многих аминокислот замена нуклеотида в третьей позиции кодона не сказывается на его смысле.

Линейность записи информации .

В ходе трансляции кодоны мРНК "читаются" с фиксированной стартовой точки последовательно и не перекрываются. В записи информации отсутствуют сигналы, указывающие на конец одного кодона и начало следующего. Кодон AUG является инициирующим и прочитывается как в начале, так и в других участках мРНК как Мет. Следующие за ним триплеты читаются последовательно без каких-либо пропусков вплоть до стоп-кодона, на котором синтез полипептидной цепи завершается.

Универсальность .

До недавнего времени считалось, что код абсолютно универсален, т.е. смысл кодовых слов одинаков для всех изученных организмов: вирусов, бактерий, растений, земноводных, млекопитающих, включая человека.

Однако позднее стало известно одно исключение, оказалось, что митохондриальная мРНК содержит 4 триплета, имеющих другое значение, чем в мРНК ядерного происхождения. Так, в мРНК митохондрий триплет UGA кодирует Три, AUA — Мет, а АСА и AGG прочитываются как дополнительные стоп-кодоны.

Колинеарность гена и продукта .

У прокариотов обнаружено линейное соответствие последовательности кодонов гена и последовательности аминокислот в белковом продукте, или, как говорят, существует колинеарность гена и продукта.

Таблица 4-4.

Генетический код

Первое основание Второе основание
U С А G
U UUU Фен UCU Cep UAU Тир UGU Цис
UUС Фен UCC Сер иАСТир UGC Цис
UUА Лей UCA Cep UAA* UGA*
UUG Лей UCG Сер UAG* UGG Apr
С CUU Лей CCU Про CAU Гис CGU Apr
CUC Лей ССС Про САС Гис CGC Apr
CUA Лей ССА Про САА Глн CGA Apr
CUG Лей CCG Про CAG Глн CGG Apr
А AUU Иле ACU Tpe AAU Асн AGU Сер
AUC Иле АСС Тре ААС Асн AGG Сер
AUA Мет АСА Тре ААА Лиз AGA Apr
AUG Мет ACG Тре AAG Лиз AGG Apr
G GUU Ban GCU Ала GAU Асп GGU Гли
GUC Вал GCC Ала GAC Асп GGC Гли
GUА Вал GСА Ала GАА Глу GGA Гли
GUG Вал GСG Ала GAG Глу GGG Гли

Примечания: U — урацил; С — цитозин; А — аденин; G — гуанин; * — терминирующий кодон.

У эукариотов последовательности оснований в гене, колинеарные аминокислотной последовательности в белке, прерываются нитронами.

Поэтому в эукариотических клетках аминокислотная последовательность белка колинеарна последовательности экзонов в гене или зрелой мРНК после посттранскригщионного удаления интронов.