Суть синтетической теории эволюции. Основные положения современной (синтетической) теории эволюции

Синтетическая теория эволюции

Синтетическая теория эволюции – современный дарвинизм – возникла в начале 40-х годов XX в. Она представляет собой учение об эволюции органического мира, разработанное на основе данных современной генетики, экологии и классического дарвинизма. Термин «синтетическая» идет от названия книги известного английского эволюциониста Дж. Хаксли «Эволюция: современный синтез» (1942). В разработку синтетической теории эволюции внесли вклад многие ученые.

Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом:

  • Материалом для эволюции служат наследственные изменения – мутации (как правило, генные) и их комбинации.
  • Основным движущим фактором эволюции является естественный отбор, возникающий на основе борьбы за существование.
  • Наименьшей единицей эволюции является популяция.
  • Эволюция носит в большинстве случаев дивергентный характер, т.е. один таксон может стать предком нескольких дочерних таксонов. (Таксон (лат. taxon; от др.-греч. «порядок, устройство, организация») – группа в классификации, состоящая из дискретных объектов, объединяемых на основании общих свойств и признаков. В качестве наиболее существенных характеристик (атрибутов) таксона в биологической систематике рассматривают диагноз, ранг и объем. По мере изменения классификации характеристики таксонов могут изменяться (в разных системах, например, таксоны одинакового объема могут иметь разные диагнозы, или разные ранги, или же занимать в системе иное место).)
  • Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.
  • Вид состоит из множества соподчиненных, морфологически, физиологически, экологически, биохимически и генетически отличных, но репродуктивно не изолированных единиц – подвидов и популяций.
  • Вид существует как целостное и замкнутое образование. Целостность вида поддерживается миграциями особей из одной популяции в другую, при которых наблюдается обмен аллелями («поток генов»),
  • Макроэволюция на более высоком уровне, чем вид (род, семейство, отряд, класс и др.), идет путем микроэволюции. Согласно синтетической теории эволюции, не существует закономерностей макроэволюции, отличных от микроэволюции. Иными словами, для эволюции групп видов живых организмов характерны те же предпосылки и движущие силы, что и для микроэволюции.
  • Любой реальный (а не сборный) таксон имеет монофилети-ческое происхождение.
  • Эволюция имеет ненаправленный характер, т. е. не идет в направлении какой-либо конечной цели.

Популяция – самая мелкая из групп особей, способная к эволюционному развитию, поэтому ее называют элементарной единицей эволюции. Отдельно взятый организм не может являться единицей эволюции. Эволюция происходит только в группе особей. Поскольку отбор идет по фенотипам, особи данной группы должны отличаться друг от друга, т.е. группа должна быть разнокачественной. Разные фенотипы в одних и тех же условиях могут обеспечиваться разными генотипами. Генотип же каждого конкретного организма на протяжении всей жизни остается неизменным. Популяция благодаря большой численности особей представляет собой непрерывный поток поколений и в силу мутационной изменчивости – разнородную (гетерогенную) смесь различных генотипов. Совокупность генотипов всех особей популяции – генофонд – основа микроэволюционных процессов в природе.

Вид как целостная система не может быть принят за единицу эволюции, так как обычно виды распадаются на составные их части – популяции. Вот почему роль элементарной эволюционной единицы принадлежит популяции.

Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века, эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации – новые варианты генов.

Гамета – это репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы

Влияние генов на строение и функции организма плейотропно: каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация, порождая все новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера «The genetical theory of natural selection» (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определенных генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трех процессов:

  • мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
  • рекомбинационного, создающего новые фенотипы особей;
  • селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трех перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего ее в 1932 году под названием «The causes of evolution». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов, как граптолиты и фораминиферы. В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа.

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ – в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твердый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» – тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввел в широкий научный оборот полузабытое уравнение Харди-Вайнберга. Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путем.

В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского, Дж. Хаксли, Э. Майра, Б. Ренша, Дж. Стеббинса.

Основные положения СТЭ, их историческое формирование и развитие

В 1930–1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «Evolution: The Modern synthesis» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

  • элементарной единицей эволюции считается локальная популяция;
  • материалом для эволюции являются мутационная и рекомбинационная изменчивость;
  • естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;
  • дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;
  • вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;
  • видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution». Журнал «American Naturalist» вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя, который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чем они давно уже были уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis» (1942 год). Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора.

По объему книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах еще в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Еще в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция – важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

  1. Мутации и естественный отбор – комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.
  2. Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.
  3. Репродуктивная изоляция – главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.
  4. Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространенные виды эволюционируют градуально, а малые изоляты – прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация, полиплоидия, хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) – компромисс между адаптивностью и нейтральностью.
  5. В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.
  6. Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.
  7. В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции. Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

И. И. Шмальгаузен был учеником А. Н. Северцова, однако уже в 20-е годы определился его самостоятельный путь. Он изучал количественные закономерности роста, генетику проявления признаков, саму генетику. Одним из первых Шмальгаузен осуществил синтез генетики и дарвинизма. Из огромного наследия И. И. Шмальгаузена особо выделяется его монография «Пути и закономерности эволюционного процесса» (1939). Впервые в истории науки он сформулировал принцип единства механизмов микро- и макроэволюции. Этот тезис не просто постулировался, а прямо следовал из его теории стабилизирующего отбора, который включает популяционно-генетические и макроэволюционные компоненты (автономизация онтогенеза) в ходе прогрессивной эволюции.

А. Л. Тахтаджян в монографической статье: «Соотношения онтогенеза и филогенеза у высших растений» (1943) не только активно включил ботанику в орбиту эволюционного синтеза, но фактически построил оригинальную онтогенетическую модель макроэволюции («мягкий сальтационизм»). Модель Тахтаджяна на ботаническом материале развивала многие замечательные идеи А. Н. Северцова, особенно теорию архаллаксисов (резкое, внезапное изменение органа на самых ранних стадиях его морфогенеза, приводящее к изменениям всего хода онтогенеза). Труднейшая проблема макроэволюции – разрывы между крупными таксонами, объяснялась Тахтаджяном ролью неотении в их происхождении. Неотения играла важную роль в происхождении многих высших таксономических групп, в том числе и цветковых. Травянистые растения произошли от древесных путем ярусной неотении.

Неотения (др.-греч. – юный, др.-греч. – растягиваю) – явление, наблюдаемое у некоторых членистоногих, червей, земноводных, а также у многих растений, при котором достижение половозрелости и окончание онтогенеза происходит на ранних стадиях развития, например, на личиночной стадии. При этом особь может достигать взрослой стадии или не достигать ее.

Типичный пример неотении представляют собой аксолотли, неотенические личинки хвостатых земноводных рода амбистом (Ambystoma), которые из-за наследственно обусловленного недостатка гормона тиреоидина остаются на личиночной стадии. Аксолотли по размерам не уступают взрослым особям. Иногда происходит метаморфоз аксолотлей – при постепенном изменении условий существования (пересыхание водоема) или при гормональной инъекции.

Неотения представляет собой важный с точки зрения эволюции процесс, так как при ней происходит утрата жесткой специализации, в большей степени характерной для конечных стадий развития, чем для личиночных.

В широком смысле под неотенией (ювенилизацией) также понимается проявление у взрослых особей черт, в иных условиях (ранее у того же вида, у родственных видов, в других популяциях) свойственных детским особям. Например, человек (Homo sapiens) отличается от человекообразных обезьян структурой волосяного покрова (области оволосения у человека совпадают с таковыми у плода человекообразных обезьян), а также поздним окостенением (в том числе и черепа). Неполное окостенение – ювенильная характеристика. Благодаря позднему окостенению черепа смягчаются ограничения на рост мозга.

Еще в 1931 году С. Райтом была предложена концепция случайного дрейфа генов, которая говорит об абсолютно случайном формировании генофонда дема как малой выборки из генофонда всей популяции. Изначально дрейф генов оказался тем самым аргументом, которого очень долго не хватало для того, чтобы объяснить происхождение неадаптивных различий между таксонами. Поэтому идея дрейфа сразу стала близка широкому кругу биологов. Дж. Хаксли назвал дрейф «эффектом Райта» и считал его «наиболее важным из недавних таксономических открытий». Джордж Симпсон (1948) основал на дрейфе свою гипотезу квантовой эволюции, согласно которой популяция не может самостоятельно выйти из зоны притяжения адаптивного пика. Поэтому, чтобы попасть в неустойчивое промежуточное состояние, необходимо случайное, независящее от отбора генетическое событие – дрейф генов . Он является предпосылкой и движущей силой эволюции с позиций синтетической теории.

Аллель – это различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму.

Известно, что при наличии определенных условий частота аллелей в генофонде популяции остается постоянной из поколения в поколение. При этих условиях популяция будет находиться в состоянии генетического равновесия и никаких эволюционных изменений происходить не будет. Поэтому для осуществления эволюционных процессов необходимо наличие факторов, поставляющих эволюционный материал, т. е. приводящих к генетической изменчивости структуры популяции. Эту роль выполняют мутационный процесс, комбинативная изменчивость, поток генов. периодические колебания численности популяций (популяционные волны, или волны жизни), дрейф генов. Имея различную природу, эти факторы действуют случайно и ненаправленно и ведут к появлению в популяции разнообразных генотипов. Важное значение для эволюции имеют факторы, обеспечивающие возникновение барьеров, которые препятствуют свободному скрещиванию. Это различные формы изоляции, нарушающие панмиксию (свободное скрещивание организмов) и закрепляющие любые различия в наборах генотипов в разных частях популяции.

Главным источником появления новых аллелей в популяции служат генные мутации. Частота возникновения новых мутаций обычно невысока: 1 *10-6–1*10-5 (одна мутация на 10 тыс. – 1 млн. особей [гамет] в поколении). Однако в связи с большим числом генов (у высших форм, например, их десятки, тысяч) общая частота всех возникающих мутаций у живых организмов достаточно высока. У некоторых видов от 10 до 25% особей (гамет) на одно поколение несут мутации. В большинстве случаев возникновение мутаций снижает жизнеспособность особей по сравнению с родительскими формами. Однако при переходе в гетерозиготное состояние многие мутации не только не снижают жизнеспособность несущих их особей, но и повышают ее (явление инбридинга и последующего гетерозиса при скрещивании инбредных линий). Некоторые мутации могут оказаться нейтральными, а небольшой процент мутаций с самого начала даже приводит в определенных условиях к повышению жизнеспособности особей. Какой бы малой ни была доля таких мутаций, они, в грандиозных временных масштабах эволюционного процесса, могут играть заметную роль. Вместе с тем необходимо отметить, что мутации сами по себе не приводят к развитию популяции или вида. Они только являются материалом для эволюционного процесса. Без других факторов эволюции мутационный процесс не может обеспечить направленное изменение генофонда популяции.

Определенный вклад в нарушение генетического равновесия в популяциях вносит комбинативная изменчивость. Возникнув, отдельные мутации оказываются в соседстве с другими мутациями, входят в состав новых генотипов, т.е. появляется множество сочетаний аллелей и неаллельных взаимодействий.

Важным источником генетического разнообразия в популяциях является поток генов – обмен генами между разными популяциями одного вида вследствие миграции отдельных особей из популяции в популяцию. При этом гены мигрирующих особей включаются при скрещивании в генофонд популяции. В результате таких скрещиваний генотипы потомства отличаются от генотипов родителей. В данном случае происходит перекомбинация генов на межпопуляционном уровне.

Размеры популяций, как пространственные, так и по числу особей, подвержены постоянным колебаниям. Причины этих колебаний разнообразны и в общей форме сводятся к влиянию биотических и абиотических факторов (запасы пищи, количество хищников, конкурентов, возбудителей инфекционных болезней, климатические условия года и т.п.). Например, увеличение количества зайцев (пища) через некоторое время приводит к возрастанию числа волков и рысей, которые питаются зайцами; высокие урожаи еловых шишек в условиях сухого теплого лета положительно влияют на рост популяции белок. Колебание численности популяций в природе носит периодический характер: после нарастания числа особей идет закономерное его снижение и т. д. Такие периодические колебания количества особей в популяциях С. С. Четвериков (1905) назвал «волнами жизни» или «популяционными волнами».

Волны жизни оказывают влияние на изменение генетической структуры популяций. С возрастанием численности популяции повышается вероятность появления новых мутаций и их комбинаций. Если в среднем одна мутация приходится на 100 тыс. особей, то при увеличении численности популяции в 10 раз число мутаций также возрастет в 10 раз. После спада численности сохранившаяся часть особей популяции по генетическому составу будет значительно отличаться от ранее многочисленной популяции: часть мутаций совершенно случайно исчезнет вместе с гибелью несущих их особей, а некоторые мутации так же случайно повысят свою концентрацию. При последующем росте численности генофонд популяции окажется иным, так как в нем закономерно возрастет количество особей, несущих мутации. Таким образом, популяционные волны не вызывают сами по себе наследственной изменчивости, но они способствуют изменению частоты мутаций и их рекомбинаций, т.е. изменению частот аллелей и генотипов в популяции. Итак, популяционные волны являются фактором, поставляющим материал для эволюции.

На генетическую структуру популяции оказывает влияние также дрейф генов. Этот процесс характерен для малочисленных популяций, где могут быть представлены не все аллели, типичные для данного вида. Случайные события, например преждевременная гибель особи, бывшей единственным обладателем какого-то аллеля, приведут к исчезновению этого аллеля из популяции. Точно так же, как некий аллель может исчезнуть из популяции, его частота может случайным образом повыситься. Это случайное изменение концентрации аллелей в популяции и называется дрейфом генов.

Дрейф генов непредсказуем. Небольшую популяцию он способен привести к гибели, но может сделать ее еще более приспособленной к данной среде или усилить ее дивергенцию от родительской популяции.

Таким образом, генетическое разнообразие в популяциях достигается совокупным влиянием мутаций, их комбинаций, волн жизни, потока генов и дрейфа генов.

Вскоре после формулирования С. Райтом своей концепции энтузиазм по отношению к дрейфу генов ослаб. Причина интуитивно ясна: любое полностью случайное событие неповторимо и непроверяемо. Широкое цитирование работ С. Райта в современных эволюционных учебниках, излагающих исключительно синтетическую концепцию, нельзя объяснить иначе как стремлением осветить все разнообразие взглядов на эволюцию, игнорируя родство и различие между этими взглядами.

Экология популяций и сообществ вошла в эволюционную теорию благодаря синтезу закона Гаузе и генетико-географической модели видообразования. Репродуктивная изоляция была дополнена экологической нишей в качестве важнейшего критерия вида. При этом нишевый подход к виду и видообразованию оказался более общим, чем чисто генетический, так как он применим и к видам, не имеющим полового процесса.

Вхождение экологии в эволюционный синтез представляло собой заключительный этап формирования теории. С этого момента начался период использования СТЭ в практике систематики, генетики, селекции, продолжавшийся до развития молекулярной биологии и биохимической генетики.

С развитием новейших наук СТЭ начала вновь расширяться и модифицироваться. Быть может, важнейшим вкладом молекулярной генетики в теорию эволюции было разделение генов на регуляторные и структурные (модель Р. Бриттена и Э. Дэвидсона, 1971). Именно регуляторные гены контролируют возникновение репродуктивных изолирующих механизмов, которые изменяются независимо от энзимных генов и вызывают быстрые изменения (в масштабах геологического времени) на морфологическом и физиологическом уровнях.

Идея случайного изменения генных частот нашла применение в теории нейтральности (Мотоо Кимура, 1985), которая выходит далеко за рамки традиционной синтетической теории, будучи созданной на фундаменте не классической, а молекулярной генетики. Нейтрализм основан на совершенно естественном положении: далеко не все мутации (изменения нуклеотидного ряда ДНК) приводят к изменению последовательности аминокислот в соответствующей молекуле белка. Те замены аминокислот, которые состоялись, не обязательно вызывают изменение формы белковой молекулы, а когда такое изменение все же происходит, оно не обязательно изменяет характер активности белка. Следовательно, многие мутантные гены выполняют те же функции, что и нормальные гены, отчего отбор по отношению к ним ведет себя полностью нейтрально. По этой причине исчезновение и закрепление мутаций в генофонде зависят чисто от случая: большинство их пропадает вскоре после появления, меньшинство остается и может существовать довольно долго. В результате отбору, оценивающему фенотипы, «по существу безразлично, какие генетические механизмы определяют развитие данной формы и соответствующей функции, характер молекулярной эволюции совершенно отличен от характера фенотипической эволюции» (Кимура, 1985).

Последнее высказывание, отражающее суть нейтрализма, никак не согласуется с идеологией синтетической теории эволюции, восходящей к концепции зародышевой плазмы А. Вейсмана, с которой началось развитие корпускулярной теории наследственности. Согласно взглядам Вейсмана, все факторы развития и роста находятся в половых клетках; соответственно, чтобы изменить организм, необходимо и достаточно изменить зародышевую плазму, то есть гены. В итоге теория нейтральности наследует концепцию генетического дрейфа, порожденную неодарвинизмом, но впоследствии им оставленную.

Появились новейшие теоретические разработки, позволившие еще больше приблизить СТЭ к реально существующим фактам и явлениям, которые ее первоначальная версия не могла объяснить. Достигнутые эволюционной биологией на настоящий момент рубежи отличаются от представленных ранее постулатов СТЭ:

  1. Постулат о популяции как наименьшей эволюирующей единице остается в силе. Однако огромное количество организмов без полового процесса остается за рамками этого определения популяции, и в этом видится значительная неполнота синтетической теории эволюции.
  2. Естественный отбор не является единственным движителем эволюции.
  3. Эволюция далеко не всегда носит дивергентный характер.
  4. Эволюция не обязательно идет постепенно. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.
  5. Макроэволюция может идти как через микроэволюции, так и своими путями.
  6. Сознавая недостаточность репродуктивного критерия вида, биологи все еще не могут предложить универсального определения вида как для форм с половым процессом, так и для агамных форм.
  7. Случайный характер мутационной изменчивости не противоречит возможности существования определенной канализированности путей эволюции, возникающей как результат прошлой истории вида. Должна стать широко известной и теория номогенеза или эволюция на основе закономерностей, выдвинутая в 1922–1923 гг. Л.С. Бергом. Его дочь Р. Л. Берг рассмотрела проблему случайности и закономерности в эволюции и пришла к заключению, что «эволюция совершается по разрешенным путям» (Р. Л. Берг, «Генетика и эволюция», избранные труды, Новосибирск, Наука, 1993, стр.283).
  8. Наряду с монофилией признается широкое распространение парафилии.
  9. Реальностью является и некоторая степень предсказуемости, возможность прогнозирования общих направлений эволюции (положения новейшей биологии взяты из: Николай Николаевич Воронцов, 1999, стр. 322 и 392–393).

Можно сказать, что развитие СТЭ будет продолжаться с появлением новых открытий в области эволюции.

Критика синтетической теории эволюции. Синтетическая теория эволюции не вызывает сомнений у большинства биологов: считается, что процесс эволюции в целом удовлетворительно объясняется этой теорией.

В качестве одного из критикуемых общих положений синтетической теории эволюции можно привести ее подход к объяснению вторичного сходства, то есть близких морфологических и функциональных признаков, которые не были унаследованы, а возникли независимо в филогенетически далеких ветвях эволюции организмов.

Согласно неодарвинизму, все признаки живых существ полностью определяются генотипом и характером отбора. Поэтому параллелизм (вторичное сходство родственных существ) объясняется тем, что организмы унаследовали большое количество одинаковых генов от своего недавнего предка, а происхождение конвергентных признаков целиком приписывается действию отбора. Вместе с тем, хорошо известно, что черты сходства, развивающиеся в достаточно удаленных линиях, часто бывают неадаптивны и поэтому не могут быть правдоподобно объяснены ни естественным отбором, ни общим наследованием. Независимое возникновение одинаковых генов и их сочетаний заведомо исключается, поскольку мутации и рекомбинация – случайные процессы.

В ответ на такую критику сторонники синтетической теории могут возразить, что представления С. С. Четверикова и Р. Фишера о полной случайности мутаций в настоящее время значительно пересмотрены. Мутации случайны лишь по отношению к среде обитания, но не к существующей организации генома. Сейчас представляется вполне естественным, что разные участки ДНК обладают различной устойчивостью; соответственно, одни мутации будут возникать чаще, другие – реже. Кроме того, набор нуклеотидов весьма ограничен. Следовательно, существует вероятность независимого (и притом вполне случайного, беспричинного) появления одинаковых мутаций (вплоть до синтеза далекими друг от друга видами одного и аналогичных белков, которые не могли достаться им от общего предка). Эти и другие факторы обуславливают значительную вторичную повторяемость в структуре ДНК и могут объяснять происхождение неадаптивного сходства с позиций неодарвинизма как случайного выбора из ограниченного числа возможностей.

Другой пример – критика СТЭ сторонниками мутационной эволюции – связан с концепцией пунктуализма или «прерывистого равновесия». Пунктуализм основан на простом палеонтологическом наблюдении: продолжительность стазиса на несколько порядков превышает длительность перехода из одного фенотипического состояния в другое. Судя по имеющимся данным, это правило в общем справедливо для всей ископаемой истории многоклеточных животных и имеет достаточное количество подтверждений.

Авторы пунктуализма противопоставляют свой взгляд градуализму – представлению Дарвина о постепенной эволюции путем мелких изменений – и считают прерывистое равновесие достаточным поводом для отрицания всей синтетической теории. Столь радикальный подход вызвал дискуссию вокруг концепции прерывистого равновесия, длящуюся уже 30 лет. Большинство авторов сходится на том, что между понятиями «постепенная» и «прерывистая» имеется лишь количественная разница: длительный процесс предстает мгновенным событием, будучи изображен на сжатой временной шкале. Поэтому пунктуализм и градуализм следует рассматривать как дополнительные понятия. Кроме того, сторонники синтетической теории справедливо отмечают, что прерывистое равновесие не создает для них дополнительных трудностей: длительный стазис можно объяснять действием стабилизирующего отбора (под действием стабильных, относительно неизменных условий существования), а быстрое изменение – теорией смещающегося равновесия С. Райта для малых популяций, при резких изменениях условий существования и/или в случае прохождения вида или какой-либо его изолированной части, популяции, через бутылочное горлышко.

Вариации генома в ответ на вызов среды. В теории эволюции и в генетике всегда обсуждался вопрос о связи наследственных изменений с направлением отбора. Согласно дарвиновским и постдарвиновским представлениям, наследственные изменения происходят в разных направлениях и лишь затем подхватываются отбором. Особенно наглядным и убедительным оказался метод реплик, изобретенный в начале 50-х годов супругами Ледерберг. С помощью бархатной материи они получали точные копии – отпечатки – опытного посева бактерий на чашке Петри. Затем на одной из чашек вели отбор на устойчивость к фагу и сопоставляли топографию точек появления устойчивых бактерий на чашке с фагом и в контроле. Расположение устойчивых к фагу колоний было одинаковым в двух чашках-репликах. Такой же результат получили и при анализе положительных мутаций у бактерий, дефектных по какому-либо метаболиту.

Открытия в области подвижной генетики показали, что клетка как целостная система в ходе отбора может адаптивно перестраивать свой геном. Она способна ответить на вызов среды активным генетическим поиском, а не пассивно ждать случайного возникновения мутации, позволяющей выжить. А в опытах супругов Ледерберг у клеток не было выбора: либо смерть, либо адаптивная мутация.

В тех же случаях, когда фактор отбора не летален, возможны постепенные перестройки генома, прямо или косвенно связанные с условиями отбора. Это выяснилось с открытием в конце 70-х годов постепенного умножения числа локусов, в которых расположены гены устойчивости к селективному агенту, блокирующему деление клеток. Известно, что метотрексат – ингибитор клеточного деления – широко применяется в медицине для остановки роста злокачественных клеток. Этот клеточный яд инактивирует фермент дигидрофолатредуктазу (ДГФР), работу которого контролирует определенный ген.

Устойчивость клеток лейшмании к яду-цитостатику (метотрексат) возрастала ступенчато, и пропорционально увеличивалась доля амплифицированных сегментов с геном устойчивости. Умножался не только селектируемый ген, но и большие прилежащие к нему участки ДНК, названные ампликонами. Когда устойчивость к яду у лейшмании повысилась в 1000 раз, амплифицированные внехромосомные сегменты составили до 10% ДНК в клетке! Можно сказать, что из одного облигатного гена образовался пул факультативных элементов. Произошла адаптивная перестройка генома в ходе отбора.

Если отбор продолжался достаточно долго, часть ампликонов встраивалась в исходную хромосому, и после прекращения отбора устойчиво сохранялась повышенная устойчивость.

С удалением из среды селективного агента число ампликонов с геном устойчивости постепенно снижалось в ряду поколений и одновременно падала устойчивость. Тем самым был смоделирован феномен длительных модификаций, когда массовые изменения, вызванные средой, наследуются, но постепенно угасают в ряду поколений.

При повторном отборе часть сохранившихся в цитоплазме ампликонов обеспечивала быструю их автономную репликацию, и устойчивость возникала гораздо быстрее, чем в начале опытов. Иными словами, формировалась своеобразная клеточная ампликонная память о прошедшем отборе на основе сохранившихся ампликонов.

Если сопоставить метод реплик и ход отбора на устойчивость в случае амплификации, то оказывается, что именно контакт с селективным фактором вызвал преобразование генома, характер которого коррелировал с интенсивностью и направлением отбора.

Дискуссия об адаптивных мутациях. В 1988 г. в журнале «Nature» появилась статья Дж.Кэйрнса с соавторами о возникновении у бактерии E.coli отборзависимых «направленных мутаций». Брали бактерии, несущие мутации в гене lacZ лактозного оперона, неспособные расщеплять дисахарид лактозу. Но эти мутанты могли делиться на среде с глюкозой, откуда их через один–два дня роста переносили на селективную среду с лактозой. Отобрав lac+ реверсов, которые, как и ожидалось, возникли еще в ходе «глюкозных» делений, нерастущие клетки оставляли в условиях углеводного голодания. Сначала мутанты отмирали. Но спустя неделю и более наблюдался новый рост за счет вспышки реверсий именно в гене lacZ. Как будто клетки в условиях жесткого стресса, не делясь (!), вели генетический поиск и адаптивно меняли свой геном.

В последующих работах Б.Холла использовались бактерии, мутантные по гену утилизации триптофана (trp). Их помещали на среду, лишенную триптофана, и оценивали частоту реверсий к норме, которая повышалась именно при триптофановом голодании. Но причиной этого феномена были не сами условия голодания, ибо на среде с голоданием по цистеину частота реверсий к trp+ не отличалась от нормы.

В следующей серии опытов Холл взял уже двойных недостаточных по триптофану мутантов, несущих одновременно мутации в генах trpA и trpВ, и вновь поместил бактерии на среду, лишенную триптофана. Выжить могли только особи, у которых реверсии возникали одновременно в двух триптофановых генах. Частота появления таких особей была в 100 млн раз выше, чем ожидалось при простом вероятностном совпадении мутаций в двух генах. Холл предпочел называть этот феномен «адаптивные мутации» и впоследствии показал, что они возникают и у дрожжей, т.е. у эвкариот.

Публикации Кэйрнса и Холла немедленно вызвали бурную дискуссию. Итогом ее первого раунда стало выступление одного из ведущих исследователей в области подвижной генетики Дж.Шапиро. Он кратко обсудил две основные идеи. Во-первых, клетка содержит биохимические комплексы, или системы «естественной генетической инженерии», которые способны реконструировать геном. Активность этих комплексов, как и любая клеточная функция, может резко меняться в зависимости от физиологии клетки. Во-вторых, частота возникновения наследственных изменений всегда оценивается не для одной клетки, а для клеточной популяции, в которой клетки могут обмениваться между собой наследственной информацией. Кроме того, межклеточный горизонтальный перенос с помощью вирусов или передачи сегментов ДНК усиливается в стрессовых условиях. Как считает Шапиро, эти два механизма объясняют феномен адаптивных мутаций и возвращают его в русло обычной молекулярной генетики. Каковы же, на его взгляд, итоги дискуссии? «Мы нашли там генетического инженера с впечатляющим набором замысловатых молекулярных инструментов для реорганизации ДНК-молекулы» (Shapiro J. // Science. 1995. V.268. P.373–374).

За последние десятилетия на уровне клетки открыта такая непредвиденная сфера сложности и координации, которая более совместима с компьютерной технологией, нежели с механизированным подходом, доминировавшим во время создания неодарвинистского современного синтеза. Вслед за Шапиро, можно назвать по крайней мере четыре группы открытий, изменивших понимание клеточных биологических процессов.

1. Организация генома. У эвкариот генетические локусы устроены по модульному принципу, представляя собой конструкции из регуляторных и кодирующих модулей, общих для всего генома. Это обеспечивает быструю сборку новых конструкций и регуляцию генных ансамблей. Локусы организованы в иерархические сети, во главе с главным геном-переключателем (как в случае регуляции пола или развития глаза). Причем многие из соподчиненных генов интегрированы в разные сети: они функционируют в разные периоды развития и влияют на множество признаков фенотипа.

2. Репаративные возможности клетки. Клетки вовсе не пассивные жертвы случайных физико-химических воздействий, поскольку в них имеется система репараций на уровне репликации, транскрипции и трансляции.

3. Мобильные генетические элементы и природная генетическая инженерия. Работа иммунной системы построена на непрерывном конструировании новых вариантов молекул иммуноглобулинов на основе действия природных биотехнологических систем (ферменты: нуклеазы, лигазы, обратные транскриптазы, полимеразы и т.д.). Эти же системы используют мобильные элементы для создания новых наследуемых структур. При этом генетические изменения могут быть массовыми и упорядоченными. Реорганизация генома – один из основных биологических процессов. Природные генноинженерные системы регулируются системами с обратной связью. До поры до времени они пребывают в неактивном состоянии, но в ключевые периоды или во время стресса приводятся в действие.

4. Клеточный информационный процессинг. Возможно, одно из самых важных открытий в области биологии клетки состоит в том, что клетка непрерывно собирает и анализирует информацию о своем внутреннем состоянии и внешней среде, принимая решение о росте, движении и дифференциации. Особенно показательны механизмы контроля клеточного деления, лежащие в основе роста и развития. Процесс митоза универсален у высших организмов и включает три последовательных этапа: подготовка к делению, репликация хромосом и завершение деления клетки. Анализ генного контроля этих фаз привел к открытию особых точек, в которых клетка проверяет, произошла ли репарация нарушений в структуре ДНК на предыдущем этапе или нет. Если ошибки не будут исправлены, последующий этап не начнется. Когда же ликвидировать повреждения нельзя, запускается генетически запрограммированная система клеточной смерти, или апоптоза.

В условиях вызова среды клетка действует целенаправленно, подобно компьютеру, когда при его запуске шаг за шагом проверяется нормальная работа основных программ, и в случае неисправности работа компьютера останавливается. В целом становится очевидной, уже на уровне клетки, правота нетрадиционного французского зоолога-эволюциониста Поля Грассэ: «Жить – значит реагировать, а отнюдь не быть жертвой».

Пути возникновения естественных наследственных изменений в системе среда–факультативные элементы–облигатные элементы. Факультативные элементы первыми воспринимают немутагенные факторы среды, а возникающие затем вариации вызывают мутации. На поведение факультативных элементов влияют и облигатные элементы.

Неканонические наследственные изменения, возникающие под влиянием отбора к цитостатикам и приводящие к амплификации генов.

Макромутационная эволюция

Венцом общеэволюционной концепции принято считать синтетическую теорию эволюции (CТЭ). В ней была предпринята попытка совместить с дарвиновскими градуализмом и естественным отбором классическую генетику, первоначально довольно резко с ними расходившуюся.

В то же время в зарубежной и отечественной науке постепенно складывались взгляды, противоречащие синтетической теории эволюции или существенно ее модифицирующие (нередко на уровне философско-биологическом).

В отечественной биологии выделяются три вехи становления недарвиновских взглядов на процессы эволюции. Первая – концепция номогенеза Л.С.Берга, сформулированная в 20-е годы. Заключается она в постулировании иных движущих эволюции, нежели тех, что формулировал Дарвин и сторонники СТЭ: вместо монофилии – полифилия, вместо градуальности – скачкообразность, вместо случайности – закономерность. Тогда же в СССР распространялись ламаркистские взгляды, привлекательные для марксистской идеологии и объяснявшие эволюцию наследованием приобретенных признаков, чтобы залатать существовавшие в эволюционной концепции дыры. С развитием генетики, доказавшей несостоятельность этого принципа, такие взгляды постепенно отмирали (в 50-60-е годы их возрождали О.Лепешинская и Т.Лысенко).

В последнее время некоторые западные биологи (главным образом работающие с бактериями и простейшими) пытаются вернуться к гипотезе о наследовании приобретенных признаков. Их представления зиждятся на эпигенетической наследственности у простейших и бактерий (она давно известна и наблюдается при дифференцировке клеток у многоклеточных организмов). В действительности подобные взгляды основаны на непонимании тех понятий, которыми оперируют авторы. Ведь о наследовании приобретенных признаков можно говорить только в том случае, если речь идет об организмах, клетки которых разделены на соматические и половые, и когда признак, приобретенный первыми, неведомым образом передается и закрепляется в геноме вторых. Например, если фанат боди-билдинга с помощью специальных упражнений нарастит свои бицепсы до невиданной величины, то в согласии с неоламаркистскими взглядами геном его половых клеток должен каким-то образом об этом узнать и записать информацию; тогда у потомков данного субъекта подобные мышцы должны появиться без всякой тренировки. Пока существование такого механизма не просматривается. Ссылки на генетический импринтинг не правомочны – с одинаковым успехом обычные мутации можно назвать наследованием приобретенных признаков. Организм ведь их приобрел! Иными словами, хотят того или нет новые ламаркисты (скорее всего не хотят!), последовательное проведение в жизнь их точки зрения прямой дорогой ведет к отрицанию основных постулатов современной генетики, т.е. к лысенковщине, совсем другой парадигме, не имеющей каких-либо надежных экспериментальных оснований.

Следующий этап становления недарвиновских взглядов связан с Ю.П.Алтуховым и Н.Н.Воронцовым (60–70-е годы). Первый – на западе ему вторит А.Карсон (1975) – подразделил геном на полиморфный и мономорфный и выдвинул гипотезу, согласно которой полиморфизм и обеспечивающая его часть генома способствуют постоянству вида, расширяют его приспособительные возможности и соответственно ареал распространения. Видообразование же происходит за счет скачкообразного изменения мономорфной части генома (Алтухов Ю.П. Генетические процессы в популяциях. М., 1983).

Воронцов сформулировал концепцию мозаичной эволюции и разработал учение о роли макромутаций и сейсмических факторов в филогенезе (Воронцов Н.Н. Развитие эволюционных идей в биологии. М., 1999), а также о быстром видообразовании, обусловленном изменениями в структуре хромосом.

Третий этап (80–90-е годы) знаменуется открытием томского генетика В.Н.Стегния. Он продемонстрировал видоспецифичность точек прикрепления политенных (в виде пучка хромосомных нитей) хромосом насекомых к ядерной мембране и доказал отсутствие полиморфизма по данному признаку (Стегний В.Н. Архитектоника генома. Системные мутации и эволюция. Новосибирск, 1991). Следовательно, видообразование по постулированному СТЭ принципу постепенного изменения генных частот в данном случае исключается и должно происходить путем макромутации .

Сторонники макромутационной эволюции, всегда придавали огромное значение единству исторического и индивидуального развития (Корочкин Л.И. Введение в генетику развития. М., 1999), о котором заговорили сразу после создания эволюционной теории. Ведь эволюционные преобразования не могли начинаться иначе, как через изменения программы индивидуального развития.

Первоначально это единство выражали в так называемом биогенетическом законе. Основываясь на работах И.Меккеля и Ч.Дарвина, немецкий биолог Ф.Мюллер еще в 1864 г. указал на тесную связь эмбрионального развития предков с эмбриогенезом потомков. Идею эту преобразовал в биогенетический закон известный дарвинист Э.Геккель, который в 1866 г. сформулировал его следующим образом: «Онтогенез является коротким и быстрым повторением филогенеза, повторением, обусловленным физиологическими функциями наследственности (воспроизведения) и приспособленности (питания)».

Наиболее выдающиеся эмбриологи того времени (А.Келликер, В.Гис, К.Бэр, О.Гертвиг, А.Седжвик) критически восприняли идеи Мюллера–Геккеля, полагая, что новое в онтогенезе возникает не за счет прибавления новых стадий к онтогенезу предков, а за счет такого изменения хода эмбриогенеза, которое преобразует онтогенез в целом. В 1886 г. В.Клайненберг предположил, что такие, казалось бы, лишенные функции эмбриональные структуры, как хорда или трубчатая закладка сердца у позвоночных, считавшиеся примерами рекапитуляции (т.е. повторением в эмбриогенезе современных организмов признаков, которые были у их взрослых предков), принимают участие в формировании более поздних структур. Один из основателей американской эмбриологии С.Уитман пророчески писал в 1895 г., что наши глаза похожи на глаза наших предков не вследствие генеалогических связей, а потому, что молекулярные процессы, определяющие их морфогенез, происходили в сходных условиях.

Наконец, давно известно такое явление, как преадаптация. Еще Бэр отмечал, что если бы биогенетический закон был верен, то в эмбриогенезе более низко организованных животных в проходящем состоянии не наблюдались бы образования, присущие лишь вышестоящим формам. Подобных примеров множество. Так, у всех млекопитающих челюсти в самом начале развития так же коротки, как у человека, а мозг птиц в течение первой трети эмбриогенеза гораздо ближе к мозгу млекопитающих, чем во взрослом состоянии. Еще в 1901 г. российский палеонтолог А.П.Павлов показал, что молодые особи некоторых аммонитов обладают признаками, которые исчезают в зрелом возрасте, но обнаруживаются у более высокостоящих форм.

В 20–30-е годы критику биогенетического закона продолжил ученик Седжвика Ф.Гарстанг, утверждавший, что онтогенез не повторяет филогенез, а творит его. Гарстанга поддержали Л.Берталанфи и Т.Морган, который, в частности, отметил, что в ходе эволюции эмбриональные стадии могут изменяться и терять сходство с соответствующими стадиями более ранних форм. Следовательно, если теория рекапитуляции – закон, то он имеет так много исключений, что становится бесполезным и часто ошибочным. Понимая всю серьезность этих возражений и стремясь тем не менее спасти биогенетический закон, выдающийся российский биолог А.Н.Северцов выдвинул теорию филэмбриогенеза, в соответствии с которой эмбриональные изменения связаны с филогенетическим развитием взрослого организма (Северцов А.Н. Морфологические направления эволюционного процесса. М., 1967). Он выделил три типа филэмбриогенеза: надставка конечной стадии (например, развитие челюстей у саргановых рыб); изменение пути развития (развитие чешуи у акуловых рыб и рептилий); изменение первичных зачатков.

Однако пионерные работы Северцова не положили конец критике представлений Геккеля–Мюллера. Негативное отношение к ним продемонстрировали палеонтолог Ш.Депере, зоолог А.А.Любищев, эмбриологи Д.Дьюор, С.Г.Крыжановский, физиолог И.А.Аршавский и др.

Так, Дьюор заметил, что пищеварительный канал эмбриона некоторое время замкнут (т.е. не связан ни со ртом, ни с анальным отверстием), а это вряд ли может иметь смысл на какой-либо предковой стадии. Закладка однопалой конечности лошади с самого начала обнаруживает четкую специфичность: утрата в ходе эволюции латеральных пальцев не повторяется в онтогенезе этого животного. Утраченные пальцы редуцированы в самой ранней эмбриональной закладке (Dewar D. Difficulties of the evolution theory. L., 1931).

О сходных противоречиях говорят и сравнительно-эмбриологические исследования. Становление в онтогенезе плана строения тела различных организмов обусловлено изменениями в экспрессии генов сегментации и гомеозисных генов. Стадия, на которой в эмбрионах одной ветви морфологическое сходство наивысшее, называется филотипической. Стадия, на которой у животных разных ветвей появляются различия в плане строения тела, связанные с работой гомеозисных генов, обозначается как зоотипическая.

Например, хордовые проходят стадию развития, на которой имеют сходное устройство нервной трубки, нотохорды и сомитов. Это та филотипическая точка, на которой устанавливается региональная идентичность экспрессии гомеозисных генов. Несмотря на консерватизм филотипической и зоотипической стадий, генетики развития определяют, что начальные стадии эмбриогенеза внутри каждой ветви разнообразны. Например, эмбрионы человека, цыпленка и рыбы данио похожи на филотипической стадии, а на более ранних стадиях развития они морфологически совершенно различны, что находится в противоречии с биогенетическим законом.

Отражают ли морфологические и морфогенетические отличия какую-либо соответствующую им молекулярно-генетическую специфичность? Имеющийся фактический материал позволяет предположить, что молекулярно-генетическая «машина» во всех случаях сходная, а морфологические различия обусловлены сдвигами во временной последовательности одних и тех же молекулярных процессов. Именно они определяют морфогенез разных таксонов.

Это можно проследить на примере эволюции насекомых. Так, у дрозофилы полноценный набор сегментов тела устанавливается уже к концу стадии бластодермы. Эмбрионов таких насекомых (мух, пчел) называют зародышами с длинной закладкой. У кузнечика же синцитий и клеточная бластодерма формируются, как у дрозофилы, но только малая фракция бластодермы (зародышевая закладка) участвует в развитии эмбриона, а остальная ее часть дает начало эмбриональным мембранам. В этом случае план строения животного в зародышевой закладке не представлен полностью. Из нее возникает только головная область, а другие части развиваются из зоны роста. Такие эмбрионы называют зародышами с короткой закладкой. Существует и промежуточный тип развития, когда из зародышевой закладки развиваются голова и грудь, а брюшная область – позднее из зоны роста. Подобные явления нелегко согласовать с биогенетическим законом, а посему понятен скепсис к нему.

Однако в отечественной литературе по эволюционной биологии по-прежнему наблюдается серьезное отношение к биогенетическому закону, а в западной литературе его обычно вообще не упоминают или отрицают. Яркий тому пример – книга Р.Рэффа и Т.Кауфмана (Рэфф Р., Кауфман Т. Эмбрионы, гены, эволюция. М. 1986), которые полагают, что «слабости биогенетического закона заключались в его зависимости от ламарковской теории наследственности и в его непременном условии, что новая эволюционная ступень может быть достигнута только как добавление к взрослой стадии непосредственного предка». И еще: «В совокупности менделевская генетика, обособленность клеток зародышевой линии и важность морфологических признаков на всем протяжении развития положили конец теории рекапитуляции...»

Это, конечно, крайняя позиция, но она популярна на Западе. Однако у нас нет оснований сомневаться, что индивидуальное и историческое развитие организмов тесно связаны, поскольку всякое эволюционное преобразование базируется на тех или иных генетически детерминированных сдвигах в онтогенезе. Следовательно, они составляют некое единство, при оценке которого следует исходить из того, что и индивидуальное, и эволюционное развитие основываются на одном и том же материале, а именно на ДНК, и потому им должны быть присущи ОБЩИЕ закономерности.

Едва ли заключенная в ДНК наследственная информация развертывается в онто- и филогенезе принципиально иным путем. Тем не менее в настоящее время такое допущение общепринято. Полагают, что филогенез осуществляется на базе нецелесообразных, ненаправленных процессов и основывается на постепенном накоплении в популяции случайных, мелких мутаций. Но, исходя из принципа единства, разумнее и логичнее распространить экспериментально доказанные особенности онтогенеза на обусловленные ими эволюционные события, которые, как правило, не поддаются точной проверке, а потому формулируются как спекулятивные, подтянутые под ту или иную экспериментально непроверяемую концепцию.

При экстраполяции данных генетики развития на филогенетические процессы необходимо опираться на следующие факты.

Во-первых, онтогенез подчинен определенной цели – преобразованию во взрослый организм – и, следовательно, целесообразен. Отсюда следует целесообразность и эволюционного процесса, коль скоро он зависит от того же самого материала – ДНК.

Во-вторых, процесс онтогенеза не случаен, он протекает направленно от стадии к стадии. Всякого рода случайности исключают точную реализацию плана нормального развития. Отчего же эволюция должна основываться на случайных мутациях и идти неведомо куда по «ненаправленному» пути? Посмотрев внимательно на различные эволюционные ряды и увидев в них сходные образования (крылья у птиц, у летучих мышей, насекомых, древних рептилий, подобие крыльев у некоторых рыб), начинаешь подозревать наличие запрограммированного в самой структуре ДНК филогенеза (как и онтогенеза), словно направленного по некоему «преформированному» каналу, о чем говорил Берг в теории номогенеза.

Наконец, в ходе онтогенеза фазы относительно спокойного развития сменяются так называемыми критическими периодами, которые отличаются морфогенетической активностью ядер и активацией формообразования. Очевидно (и это подтверждается), и в эволюции длительные фазы покоя сменяются взрывами видообразования. Иными словами, она носит не градуалистский, а скачкообразный характер.

Эмбриологи уже давно рассматривают эволюцию не как результат накопления мелких мутаций, постепенно ведущих к формированию нового вида через промежуточные формы, а как следствие внезапных и коренных преобразований в онтогенезе, сразу вызывающих возникновение нового вида. Еще Е.Рабо в 1908 г. допускал, что видообразование сопряжено с мутациями большой амплитуды, проявляющимися на ранних этапах морфогенеза и нарушающими сложную систему онтогенетических корреляций.

Е.Гийено считал, что Ж.Бюффон был близок к истине, когда, описывая нелепое строение и форму клюва, характерные для некоторых видов птиц, причислял их к тератологическим (уродливым) отклонениям, едва совместимым с жизнью. Заметив, что одни и те же уродства у некоторых групп беспозвоночных (например, иглокожих) представляются то как случайные индивидуальные особенности, то как постоянные признаки видов, родов и семейств, он предположил, что некоторые катастрофические уродства есть следствия макромутаций, изменяющих ход онтогенеза. Например, неспособность к полету у многих птиц открытых пространств (эпиорниса, страусов, казуаров) возникла как уродство, обрекающее его носителей на единственный образ жизни в ограниченном биотопе. Усатые киты – настоящий парадокс природы и живая коллекция уродств. Гийено считает, что любое животное можно описать в терминах тератологии. Так, передние лапы крота – пример ахондроплазии (нарушения окостенения длинных костей конечностей), у китов наблюдается двусторонняя эктромелия (врожденное отсутствие конечностей). У человека анатомические особенности, связанные с вертикальным положением тела, отсутствие хвоста, сплошного волосяного покрова и т.д., можно рассматривать как уродство по сравнению с его предками.

Бельгийский эмбриолог А.Дальк предположил, что с кембрийского времени благодаря радикальным трансформациям самых ранних стадий эмбриогенеза установилось два-три десятка основных планов строения (архетипов). Резкие преобразования строения, случись они у взрослого, обернулись бы для него катастрофой и обрекли на гибель, а зародыши в силу своей чрезвычайной пластичности и высокой регуляционной способности могли их переносить. Он полагал, что основу эволюции составляет событие (названное им онтомутацией), которое проявляется в радикальных и в то же время жизнеспособных трансформациях в цитоплазме яйцеклетки как морфогенетической системе.

Особенно ясно положения о филогенетической роли резких отклонений эмбрионального развития сформулировал Р.Гольдшмидт в своей концепции макроэволюции. Она включает несколько постулатов:

  • макроэволюцию нельзя понять на основе гипотезы о накоплении микромутаций, она сопровождается реорганизацией генома;
  • изменения хромосомной структуры могут вызывать значительный фенотипический эффект независимо от точковых мутаций;
  • изменения, основанные на преобразовании систем межтканевых взаимодействий в онтогенезе, могут иметь эволюционное значение – они обусловливают появление так называемых многообещающих уродов, отклоняющихся в своем строении от нормы, но способных адаптироваться к определенным условиям среды и дать начало новым таксономическим единицам;
  • системная реорганизация онтогенеза реализуется либо через эффекты генов-модификаторов, либо благодаря макромутациям, существенно меняющим работу эндокринных желез, которые продуцируют различные гормоны, влияющие на развитие организма в целом.

В качестве примера фенотипических эффектов, вызванных гормонами, Гольдшмидт приводит акромегалию, гигантизм, карликовость. С.Стоккард связывает с функцией эндокринных желез многие расовые признаки у собак, а Д.К.Беляев продемонстрировал существенные сдвиги в функции эндокринных желез при одомашнивании лисиц.

Проведенные еще в начале 30-х годов эксперименты на рыбе из семейства илистых прыгунов Peryophthalmus megaris показали, что трехлетнее непрерывное введение гормона тироксина вызывает значительные морфогенетические перестройки. В этом случае удлиняются грудные плавники, которые приобретают внешнее сходство с конечностями амфибий, а рассеянные в норме эндокринные элементы, продуцирующие тироксин, группируются в более компактные образования, похожие на структуры, свойственные амфибиям. Эти факты позволили Гольдшмидту сделать вывод о значительном фенотипическом эффекте тех изменений генома, которые отражаются на механизмах гормонального контроля. Воронцов, разделявший взгляды Гольдшмидта, представил два бесспорных факта макромутационного возникновения безволосых видов млекопитающих за счет единственной макромутации типа безволосости – hairless. Эти данные противоречат концепции облигатного градуализма.

Один из крупнейших палеонтологов современности О.Шиндевольф, также полагая, что онтогенез предваряет филогению, предложил теорию типострофизма. Он игнорировал популяционные процессы, отверг эволюционную роль случайности и признал носителем эволюции отдельную особь. Отсутствие промежуточных форм в палеонтологической летописи объяснял быстрой трансформацией форм, обусловленной резкими изменениями уровня космической и солнечной радиации. Ему же принадлежит крылатая фраза: «Первая птица вылетела из яйца рептилии».

Схема эмбрионального развития и строения глаза головоногих моллюсков (вверху) и позвоночных. 1 – сетчатка, 2 – пигментная оболочка, 3 – роговица, 4 – радужка, 5 – хрусталик, 6 – ресничное (эпителиальное) тело, 7 – сосудистая оболочка, 8 – склера, 9 – зрительный нерв, 10 – покровная эктодерма, 11 – головной мозг. На основе совершенно различных морфогенетических процессов формируются подобные органы. Именно таким путем может быть осуществлено конвергентное развитие признаков у филогенетически неродственных организмов. В основе событий, последовательно строящих данную структуру, лежит, очевидно, генетически запрограммированный план развития. Последовательное развертывание этих событий регулируется сложным и точно настроенным генетическим механизмом, начало которому может положить одноразовая макромутация Гольдшмидта.

Cходные взгляды под названием теория прерывистого равновесия исповедуют американские палеонтологи Н.Элдридж, С.Стэнли и С.Гоулд. Важное значение в эволюции они придают педоморфозу, когда онтогенез укорачивается из-за утраты взрослой стадии и животные способны размножаться на личиночной стадии. Видимо, таким путем возникли некоторые группы хвостатых земноводных (протеи, сиреновые), аппендикулярии, насекомые (таракано-сверчки гриллоблаттиды), паукообразные (ряд почвенных клещей) (Назаров В.И. Учение о макроэволюции. М., 1991).

Каковы же те конкретные процессы, которые могут вызвать преобразование типов онтогенеза? На мой взгляд, это особый вид мутаций, приводящих к изменениям временнЫх параметров созревания взаимодействующих систем в развитии. В сущности, онтогенез – это цепь эмбриональных индукций, те. взаимодействий индуктор-компетентная ткань. Полноценная эмбриональная индукция зависит от того, насколько точно соответствует в развитии время созревания индуктора и компетентной ткани. В нормальных условиях компетентная система способна отвечать формообразованием в момент стимулирующего импульса от индуктора. Рассогласования во времени созревания индуктора и компетентной ткани нарушают ход соответствующих морфогенетических процессов. Мутации, вызывающие такие рассогласования, вероятно, распространены довольно широко.

Так, становление пигментации у амфибий определяется взаимодействием эпидермиса (индуктора) и ткани нервного гребня, который служит источником меланобластов, мигрирующих субэпидермально под влиянием индуктора. Одна из мутаций (d) в гомозиготе (dd) резко ослабляет окраску аксолотля, так что лишь спина животного слегка окрашена (так называемая белая раса аксолотлей). В нашей лаборатории показано, что отсутствие окраски определяется рассогласованием во времени созревания двух взаимодействующих закладок, составляющих единую корреляционную систему. В серии экспериментов по трансплантации кусочков презумптивного эпидермиса (из которого развиваются те или иные органы) между зародышами аксолотлей белой расы мы обнаружили, что при некоторых сочетаниях возраста донора и реципиента в трансплантате развивается пигментация.

Как продемонстрировали Шмальгаузен и Беляев, типичным случаем такой дезинтеграции взаимодействующих систем служит доместикация. Например, в окраске домашних животных наблюдается неправильное распределение пятен различного цвета (у коров, собак, кошек, морских свинок), чего не бывает у диких животных (у них либо однотонная окраска, либо закономерное распределение полос или пятен). И хотя генетический контроль однотонной серой окраски достаточно сложен, его механизм легко разрушается. Мутации, проявляющиеся при одомашнивании, действуют на уровне корреляционных связей. При этом существенные связи часто теряются, а взамен появляются совершенно новые. Развитие у кур хохла и перьев на ногах, а также курдюка у овец обусловлены действительно новыми связями. Шмальгаузен рассматривает редукцию органов как распад взаимодействующих систем, а атавизм как локальную реинтеграцию, в основе которых лежат сдвиги во времени формообразовательных реакций.

Макромутации по Воронцову. А – безволосые мутанты оленьих хомячков (видны сохранившиеся вибриссы и складки ороговевшего эпителия); в норме особи этого вида покрыты обычным меховым покровом. Б – молодой, нормально пигментированный хомячок – гомозигот по мутации hairless. В – молодой безволосый хомячок-альбинос (гомозигот по двум рецессивным – hairless, albino – несцепленным признакам). Г – безволосость как систематический признак у цейлонской бабируссы.

Каковы возможные феногенетические основы формообразования, обусловленного изменением временнх параметров созревания взаимодействующих тканей? Предположим, имеется два гена А1 и А2 (аллельные и неаллельные, для данного случая не принципиально), которые контролируют соответствующие морфогенетические реакции (а1 и а2) через синтез специфических веществ а1 и а2. Очевидно, транскрипция данного локуса еще не означает, что контролируемый им признак будет выражен в фенотипе. Существуют многочисленные генетические элементы, способные подавить проявление признака.
Допустим, что морфогенетическая реакция, контролируемая геном А2, не имеет выхода в фенотип вследствие блока на каком-либо уровне регуляции, например торможения синтеза вещества а2 или рассогласования времен его синтеза и созревания реагирующей системы. Тогда возможен лишь морфогенетический процесс а11 . Если же в одном из генов-модификаторов (М) в результате мутации совпало время синтеза вещества а2 и созревания реагирующей системы, а следовательно, и фенотипическое выражение признака, контролируемого геном А2, осуществляется также событие а22 . Если реакции а1 и а2 взаимодействуют, возможны дополнительные, промежуточные формообразовательные процессы. Поскольку на относительную выраженность каждой из этих реакций в фенотипе будут влиять многочисленные гены-модификаторы, количество возникающих при этом фенотипических вариантов почти безгранично. Следует также учитывать, что ген М контролирует синтез того или иного гормона в развивающемся организме, а значит, и общий гормональный баланс. А он играет важную роль в регуляции особенностей, в том числе и временнЫх, фенотипического выражения целого комплекса различных признаков и морфогенетических реакций. Видимо, именно такие преобразования осуществляются в ходе морфогенетического процесса, который нарушается макромутацией.

Что же заставляет гены менять время экспрессии? Возможно, важную роль здесь играют гетерохроматиновые участки хромосом (они могут составлять от 20 до 80% генома). Фенотипический эффект гетерохроматина часто проявляется в раннем эмбриогенезе, например, уменьшается количество клеток на орган или сохраняются фетальные характеристики после рождения. Именно гетерохроматину и в первую очередь входящей в его состав сателлитной ДНК приписывают функцию регулятора скорости клеточного деления и, следовательно, временных параметров индивидуального развития.

Гетерохроматин и сателлитная ДНК, возможно, влияют на время экспрессии генов двояким способом: они могут ассоциироваться с определенным классом белков, способных менять структуру хроматина или влиять на трехмерную организацию интерфазного ядра. В примере с нарушением пигментации у аксолотлей времена созревания взаимодействующих тканей обусловлены, вероятно, выпадением кусочка гетерохроматина в области ядрышкового организатора. Так, у Drosophila littoralis получены лабораторные линии, отличающиеся наличием (или отсутствием) гетерохроматинового блока в районе G4 хромосомы 2, прилежащем к кластеру генов, которые кодируют изоферменты эстеразы. Оказалось, что гетерохроматиновый блок сдвигает время экспрессии изоферментов эстеразы в различных органах дрозофилы в онтогенезе.

Генетическая регуляция пигментогенеза у аксолотлей. А – контрольные эмбрионы аксолотлей белой линии на стадиях 39–40. На их боковой поверхности отсутствуют пигментные клетки. Б – результаты трансплантации презумптивного эпидермиса от эмбрионов белой линии на стадиях 34–35 эмбрионам той же линии на стадиях развития 25–26. Эмбрионы зафиксированы на стадиях 40–41. В месте трансплантата развилась пигментация (показана стрелками).

Особенно интересны случаи, когда гетерохроматиновый блок располагается вблизи района G5 хромосомы 2 D.littoralis. Там находятся гены, кодирующие три изофермента b-эстеразы, в том числе эстеразы, расщепляющей ювенильный гормон (ЮГ-эстеразы). В этом случае особи, гомозиготные по гетерохроматиновому блоку, погибают на стадии куколки. Тогда не только задерживается время синтеза изоферментов ЮГ-эстеразы, но и тормозится свойственный нормальному развитию рост их активности. Вероятно, низкая активность ЮГ-эстеразы и вызывает дисбаланс в соотношении гормон линьки экдизон/ювенильный гормон, и сложившийся гормональный статус развивающейся дрозофилы не позволяет завершить метаморфоз.

И.Ю.Раушенбах высказала гипотезу (1990), согласно которой этот органо- и тканеспецифичный изофермент вместе с нейроэндокринными органами составляет целостную систему, регулирующую адаптивную реакцию дрозофилы. В результате селекции отбираются комплексы генов-модификаторов, контролирующих экспрессию ЮГ-эстеразы в критические моменты развития особей, способствуя сохранению или уничтожению сложившихся генотипов в определенных условиях среды. В соответствии с этими представлениями колебания активности ЮГ-эстеразы есть часть реакции системы, ответственной за регуляцию онтогенеза. Внезапные и глубокие наследственные перестройки в работе таких систем могут произвести на свет «многообещающих уродов» с эволюционным будущим. Таким образом, перераспределение гетерохроматина вызывает функциональную реорганизацию генома в целом, порою затрагивающую лишь отдельные признаки, а порою достаточно глубоко преобразующую фенотипическое становление систем признаков.

В связи с этим особенно интересна организация кариотипа у разных видов Drosophila группы virilis, отличающихся по количеству гетерохроматина в геноме и отчасти по его распределению. Эта группа включает по крайней мере 12 видов, объединяемых по степени морфологического, биохимического сходства, а также скрещиваемости между собой. Различные группы четко отличаются по количеству сателлитной ДНК, собранной преимущественно в гетерохроматиновых районах хромосом.

Так, у D.virilis количество сателлитной ДНК составляет почти 50% генома. В группе texana (D.texana, D.americana, D.novamexicana, D.lummei) количество гетерохроматина значительно меньше, чем у D.virilis, а в группах littoralis и montana оно снижено еще больше.

Дж.Голл с сотрудниками обнаружили, что есть три главных типа сателлитной ДНК у D.virilis: 25% генома составляет последовательность нуклеотидов ACAAACT, 8% генома – ATAAACT и 8% – ACAAATT. Известна тканевая специфичность в распределении и дифференциальной репликации разных фракций сателлитной ДНК. Ее небольшие количества в эухроматиновых районах по-иному распределены у разных видов Drosophila группы virilis. Стегний показал, что количество сателлитной ДНК определяет видоспецифическую трехмерную организацию хроматина ядра, а также точки прикрепления хромосом к ядерному матриксу.

Что же вызывает перераспределение гетерохроматина в ходе эволюции? Ученые предположили, что за такие события ответственны подвижные генетические элементы, как бы «растаскивающие» кусочки гетерохроматиновой ДНК по разным ячейкам генома и вызывающие гольдшмидтовские макромутации. Подвижные генетические элементы могут по крайней мере двояким способом влиять на реализацию наследственной информации в развитии. Во-первых, внедряясь в область структурного гена, они изменяют скорость транскрипции и соответственно концентрацию кодируемого им белка в несколько раз. Так, в лаборатории американского генетика К.Лаури показано, что внедрение подвижного генетического элемента в зону гена алкогольдегидрогеназы снижает активность фермента примерно в четыре раза. Если в подобной ситуации окажется ген, кодирующий фактор, который формирует полярный градиент, это скажется на развитии эмбриона. Во-вторых, подвижные генетические элементы способны менять время экспрессии генов, что отражается на взаимодействии тканей в развитии и соответственно на морфогенетических процессах.

Гипотетическая схема макромутации (М), влияющей на морфогенетические процессы. Продукт а1 кодируется геном А1 и детерминирует реализацию морфогенетической реакции а1, продукт а2 кодируется геном А2 и принимает участие только под влиянием гена-модификатора (М). В этом случае он детерминирует реализацию морфогенетической реакции а22 . Взаимодействие продуктов обеспечивает вариации в морфогенетических событиях, контролируемых каждым из них (Корочкин, 1999).

Иными словами, происходящие в определенных точках генома элиминации, вставки и перераспределения блоков сателлитной ДНК, обусловленные их «захватом» подвижными генетическими элементами, могут быть механизмом реализации направленности эволюционного процесса (места этих вставок расположены закономерно, а не разбросаны как попало по геному). Такого рода перемещения, видимо, способствуют «взрывам» инверсий и транслокаций, как правило, сопровождающих видообразование. В работах М.Б.Евгеньева четко продемонстрирована корреляция в расположении сателлитной ДНК и подвижных генетических элементов у различных видов Drosophila группы virilis, что косвенно подтверждает эту гипотезу.

Тканеспецифическое распределение фракций сателлитной ДНК в различных органах Drosophila virilis (Endow, Gall, 1975).

Предложенная Довером схема внутригеномной миграции последовательности ДНК с исходной хромосомы 1 на гомологичные и негомологичные хромосомы (2, X, Y). Буквы (а, б, в, г) указывают пути миграции подвижных элементов. Очаг размножения подвижных элементов хромосом обозначен синими точками. Дрозофила, у которой подвижных элементов много, способна заражать другие особи (на рисунке справа).

Как показал английский генетик Г.Довер, массовые перемещения генетических элементов, связанные с резким увеличением их количества на геном, могут быть молекулярно-генетическим механизмом скачкообразного видообразования. Большое значение в происхождении видообразовательных «взрывов» придает подвижным генетическим элементам и современный палеонтолог Дж.Валентайн (1975). И все же основанные на данных генетики развития эволюционные представления пока лишь гипотезы, и решающее слово еще остается за палеонтологами.

Основные положения синтетической теории эволюции

Синтетическая теория эволюции - современный дарвинизм - возникла в начале 40-х годов XX в. Она представляет собой учение об эволюции органического мира, разработанное на основе данных современной генетики, экологии и классического дарвинизма. Термин «синтетическая» идет от названия книги известного английского эволюциониста Дж. Хаксли «Эволюция: современный синтез» (1942). В разработку синтетической теории эволюции внесли вклад многие ученые.

Основные положения синтетической теории эволюции в общих чертах можно выразить следующим образом:

Материалом для эволюции служат наследственные изменения - мутации (как правило, генные) и их комбинации.

Основным движущим фактором эволюции является естественный отбор, возникающий на основе борьбы за существование.

Наименьшей единицей эволюции является популяция.

Эволюция носит в большинстве случаев дивергентный характер, т. е. один таксон может стать предком нескольких дочерних таксонов.

Эволюция носит постепенный и длительный характер. Видообразование как этап эволюционного процесса представляет собой последовательную смену одной временной популяции чередой последующих временных популяций.

Вид состоит из множества соподчиненных, морфологически, физиологически, экологически, биохимически и генетически отличных, но репродуктивно не изолированных единиц - подвидов и популяций.

Вид существует как целостное и замкнутое образование. Целостность вида поддерживается миграциями особей из одной популяции в другую, при которых наблюдается обмен аллелями («поток генов»),

Макроэволюция на более высоком уровне, чем вид (род, семейство, отряд, класс и др.), идет путем микроэволюции. Согласно синтетической теории эволюции, не существует закономерностей макроэволюции, отличных от микроэволюции. Иными словами, для эволюции групп видов живых организмов характерны те же предпосылки и движущие силы, что и для микроэволюции.

Любой реальный (а не сборный) таксон имеет монофилети-ческое происхождение.

Эволюция имеет ненаправленный характер, т. е. не идет в направлении какой-либо конечной цели.

Синтетическая теория эволюции вскрыла глубинные механизмы эволюционного процесса, накопила множество новых фактов и доказательств эволюции живых организмов, объединила данные многих биологических наук. Тем не менее синтетическая теория эволюции (или неодарвинизм) находится в русле тех идей и направлений, которые были заложены Ч. Дарвином.

132.Современное состояние эволюционного учения.Элементарные факторы эволюции.Движущий фактор эволюции.Роль мутационных процессов,популяционных волн,изоляции,дрейфа генов и различных видов естественного отбора в популяциях .

Современное состояние эволюционного учения

Важные достижения современной эволюционной теории связаны с тем, что в настоящее время известны механизмы наследственности и изменчивости организмов, установлены внутренняя организация и разнородность биологического вида, изучена его сложная популяционная структура. Получила дальнейшее развитие теория естественного отбора, иначе представляются механизмы эволюционного процесса, установлен ряд общих правил исторического развития групп организмов.

Элементарные факторы эволюции

Можно выделить четыре основных элементарных фактора эволюции: мутационный процесс, популяционные вол­ны, изоляция, естественный отбор.

Мутационный процесс- это процесс возникновения в популяциях самых разнообразных мутаций: генных, хромосомных и геномных. Мутационный процесс является важнейшим элементарным эволюционным фактором, поскольку поставляет элементарный эволюционный материал – мутации. Именно мутации обеспечивают появление новых вариантов признака, именно мутации лежат в основе всех форм изменчивости

Популяционные волны-Периодические или апериодические колебания численности особей популяции характерны для всех без исклю­чения живых организмов. Причинами таких колебаний могут быть различные абиотические и биотические факторы среды. Действие популяционных волн, или волн жизни, предполагает неизбирательное, случайное уничтожение особей, благодаря чему редкий перед колебанием численности генотип (аллель) может сделаться обычным и быть подхваченным естественным отбором. Если в дальнейшем численность популяции восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции.Популяционные волны являются поставщиком эволюционного материала.

Изоляция- в процессе эволюции сводится к нарушению свободного скрещивания, что ведет к увеличению и закреплению различий между популяциями и отдельными частями всего населения вида. Без такого закрепления эволюционных различий невозможно никакое формообразование.

Естественный отбор – это дифференциальное выживание и размножение особей, которые отличаются друг от друга генетически детерминированными признаками.

Движущая форма естественного отбора. При данной форме отбора происходит отсев мутаций с одним средним значением признака, которые заменяются мутациями с другим средним значением признака. Другими словами, данная форма естественного отбора благоприятствует изменению среднего значения признака в измененных условиях среды. Классическим примером данной формы служит так называемый индустриальный меланизм.

Стабилизирующий отбор. Данная форма естественного от­бора наблюдается в том случае, если условия внешней среды длительное время остаются достаточно постоянными, что спо­собствует поддержанию среднего значения, выбраковывая му­тационные отклонения от ранее сформировавшейся нормы.

Разрывающий (дизруптивный) отбор. Данная форма есте­ственного отбора благоприятствует более чем одному фенотипу и направлена против средних форм. Это приводит как бы к раз­рыву популяции по данному признаку на несколько фенотипических групп, что может привести к полиморфизму.

Половой отбор - естественный отбор, касающийся призна­ков особей одного пола. Обычно половой отбор вытекает из борьбы между самцами (в редких случаях - между самками) за возможность вступить в размножение. Половой отбор - не самостоятельный фактор эволюции, а всего лишь частный слу­чай внутривидового естественного отбора.

Индивидуальный отбор сводится к дифференцированному размножению отдельных особей, обладающих преимуществами в борьбе за существование в пределах популяции. Основан на соревновании особей внутри популяции.

Групповой отбор дает преимущественное размножение осо­бей какой-либо группы. При групповом отборе в эволюции за­крепляются признаки, благоприятные для группы, но не всегда благоприятные для особей. В групповом отборе группы особей соревнуются друг с другом в создании и поддержании целостно­сти надорганизменных систем.

Искусственный отбор проводится человеком в целях созда­ния новых пород или сортов, удовлетворяющих его потребностям.

Популяционные волны – периодические колебания численности популяции. Например: численность зайцев непостоянна, каждые 4 года их становится очень много, затем следует спад численности. Значение: во время спада происходит дрейф генов.

Дрейф генов: если популяция очень маленькая (из-за катастрофы, болезни, спада поп-волны), то признаки сохраняются или исчезают независимо от их полезности, случайно.

№135 Особенности человеческих популяций. Численность, ареалы обитания, половой и возрастной состав. Демы. Изоляты.

Особенности:
- большой радиус инливидуальной активности

Границы часто социальные в большей степени, чем географические

Изолят – человеческая популяция численностью до 1500 человек.

Дем - человеческая популяция численностьюот 1500 до 4000 человек.
Численность населения - 7 миллиардов - 31 октября 2011 года

При анализе возрастного состава населения принято выделять три основные возрастные группы:

В структуре населения мира доля детей составляет в среднем 34%, взрослых - 58 %, пожилых - 8 %.
Возрастная структура в странах с различным типом воспроизводства населения имеет свои особенности.
В странах с первым типом воспроизводства доля детей не превышает 22-25%, тогда как доля людей пожилого возраста составляет 15-20% и имеет тенденцию к увеличению в связи с общим "старением" населения в этих странах.
В странах со вторым типом воспроизводства населения доля детей достаточно высока. В среднем она составляет 40-45%, а в отдельных странах уже превышает 50% (Кения, Ливия, Ботсвана). Доля пожилого населения в этих странах не превышает 5-6%.

Половой состав населения мира характеризуется преобладанием мужчин. Численность мужчин на 20-30 млн превышает численность женщин. В среднем на 100 девочек рождается 104-107 мальчиков. Однако различия по странам мира достаточно существенны.

Преобладание мужчин характерно для большинства стран Азии. Особенно велик перевес мужчин в Южной и Юго-Восточной Азии (Китай, Индия, Пакистан), а также в арабо-мусульманских странах Юго-Западной Азии и Северной Африки.

Примерно равное соотношение мужчин и женщин характерно для большинства стран Африки и Латинской Америки.

Преобладание женщин имеет место примерно в половине всех стран мира. Наиболее ярко оно проявляется в Европе, что связано с большей продолжительностью жизни женщин в этих странах, а также большими потерями мужского населения в периоды мировых войн.

Различно соотношение мужчин и женщин в разных возрастных группах. Так, наибольший перевес мужского населения во всех регионах мира наблюдается в возрастной группе до 14 лет. Среди пожилых людей во всем мире преобладают женщины.

В конце XIX - начале XX в. начали формироваться представления, которые в дальнейшем легли в основу биологической концепции вида. Хотя «происхождение видов» занимает центральное положение в теории естественного отбора, Ч. Дарвин не сделал определения вида, подчеркивая отсутствие естественных границ между подвидовыми категориями (разновидностями) и видами. В связи с этим основным критерием для различения видов Дарвин считал отсутствие между ними промежуточных форм. К. Джордан, Е. Пултон и В. Ротшильд исследовали различные формы внутривидовой изменчивости (возрастную, половую, сезонную, географическую, модификационную и полиморфную) и разработали представлений о видах как совокупностях скрещивающихся друг с другом особей, которые в то же время не скрещиваются с особями, принадлежащими к другим видам, при симпатрии (т. е. совместном обитании в одном районе). Скрещиванию разных видов препятствуют различные изоляционные механизмы (стерильность гибридов, физиологическая и морфологическая несовместимость особей как половых партнеров и т. п.). В конце прошлого века М. Вагнер показал важную роль географической изоляции в процессах видообразования.

В 1926 г. была опубликована работа С. С. Четверикова «О некоторых моментах эволюционного процесса с точки зрения современной генетики», в которой была показана высокая генетическая гетерогенность природных популяций организмов, их насыщенность разнообразными мутациями. При этом многочисленные рецессивные мутации не проявляются фенотипически - фенотипы особей в популяции зачастую различаются меньше, чем их генотипы. Четвериков подчеркивал, что фенотипические проявления активности любого отдельного гена определяются его взаимодействиями с другими генами в целостном генотипе, представляющем своего рода «генетическую среду». Генетическая гетерогенность популяции является основой для ее эволюционных преобразований. Работы С.С. Четверикова заложили основы популяционной генетики.

Интеграция дарвинизма и генетики произошла в 30-е гг. XX в. Основными вехами этого процесса принято считать работы Р. Фишера, С. Райта, Н. И. Вавилова, Н. П.Дубинина, Д.Холдейна, Д. Хаксли и др. В 40-е гг. синтез данных и выводов различных биологических наук (прежде всего - генетики, систематики, экологии, биогеографии) привел к формированию обобщающей концепции, которую в 1942 г. Д. Хаксли назвал синтетической теорией эволюции. Основным ядром этой концепции стала теория микроэволюции, представляющая собой анализ эволюционных преобразований популяций и процессов видообразования. Развитие этой теории связано с работами Т.Добжанского, Э. Майра, Б.Ренша, Н. В.Тимофеева-Ресовского и др. В последующие годы синтетическая теория эволюции в определенной степени интегрировала также данные эволюционной морфологии (в первую очередь палеонтологии, в которой особо следует выделить работы Д. Симпсона), однако макроэволюционные исследования в основном остались все же за рамками синтетической теории эволюции. Важнейшим вкладом в развитие этой области стали основополагающие труды А. Н.Северцова и И. И.Шмальгаузена, положившие начало системному анализу эволюционного процесса.

В последние десятилетия стремительно развиваются исследования эволюции на молекулярно-биологическом уровне, где были получены важные результаты, требующие осмысливания с позиций общей теории эволюции.

Подводя краткие итоги, отметим основные достижения современной эволюционистики по отношению к классической теории Ч. Дарвина.

В области микроэволюции (разрабатывавшейся в рамках синтетической теории эволюции, иногда называемой также «неодарвинизмом»):

  • 1) выяснена сущность изменчивости и наследственности организмов;
  • 2) исследована природа биологического вида, показана его сложная популяционная структура, выяснена роль популяций в эволюционном процессе;
  • 3) открыты новые факторы и механизмы эволюционного процесса (дрейф генов, полиплоидизация, гибридизация и др.);
  • 4) получила дальнейшее развитие теория естественного отбора.

В области макроэволюции (анализируемой главным образом в

русле формирующейся системной теории эволюции):

  • 1) выяснена сущность макроэволюции и ее соотношения с элементарными эволюционными изменениями;
  • 2) установлен ряд эмпирических закономерностей макрофилогенеза;
  • 3) показана эволюционная роль преобразований онтогенеза;
  • 4) проделан анализ причин направленности и неравномерности темпов макрофилогенеза;
  • 5) выяснены сущность и причины прогрессивной эволюции.

Рассмотрение современной эволюционной теории мы начнем

с проблем микроэволюции.

Распространились на Запад, где почти одновременно Р. Фишер высказал очень сходные взгляды о эволюции доминантности.

Толчок к развитию синтетической теории дала гипотеза о рецессивности новых генов. Говоря языком генетики второй половины XX века , эта гипотеза предполагала, что в каждой воспроизводящейся группе организмов во время созревания гамет в результате ошибок при репликации ДНК постоянно возникают мутации - новые варианты генов.

Влияние генов на строение и функции организма плейотропно : каждый ген участвует в определении нескольких признаков. С другой стороны, каждый признак зависит от многих генов; генетики называют это явление генетической полимерией признаков. Фишер говорит о том, что плейотропия и полимерия отражают взаимодействие генов, благодаря которому внешнее проявление каждого гена зависит от его генетического окружения. Поэтому рекомбинация , порождая всё новые генные сочетания, в конце концов создает для данной мутации такое генное окружение, которое позволяет мутации проявиться в фенотипе особи-носителя. Так мутация попадает под действие естественного отбора, отбор уничтожает сочетания генов, затрудняющие жизнь и размножение организмов в данной среде, и сохраняет нейтральные и выгодные сочетания, которые подвергаются дальнейшему размножению, рекомбинации и тестированию отбором. Причем отбираются прежде всего такие генные комбинации, которые способствуют благоприятному и одновременно устойчивому фенотипическому выражению изначально мало заметных мутаций, за счет чего эти мутантные гены постепенно становятся доминантными. Эта идея нашла выражение в труде Р. Фишера «The genetical theory of natural selection » (1930). Таким образом, сущность синтетической теории составляет преимущественное размножение определённых генотипов и передача их потомкам. В вопросе об источнике генетического разнообразия синтетическая теория признает главную роль за рекомбинацией генов.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:

  1. мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
  2. рекомбинационного, создающего новые фенотипы особей;
  3. селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием «The causes of evolution ». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов , как граптолиты и фораминиферы . В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа .

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ - в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species ». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» - тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытое уравнение Харди-Вайнберга . Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путем.

В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского , Дж. Хаксли , Э. Майра , Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из русских учёных, по меньшей мере, следовало бы назвать И. И. Шмальгаузена , Н. В. Тимофеева-Ресовского , Г. Ф. Гаузе , Н. П. Дубинина , А. Л. Тахтаджяна . Из британских ученых велика роль Дж. Б. С. Холдейна-младшего, Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и других.

Основные положения СТЭ, их историческое формирование и развитие

В 1930-1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

  • элементарной единицей эволюции считается локальная популяция ;
  • материалом для эволюции являются мутационная и рекомбинационная изменчивость;
  • естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов ;
  • дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;
  • вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;
  • видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution ». Журнал «American Naturalist » вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя , который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чём они давно уже были уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis » (1942 год). Труд Хаксли по объему анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии Провин так оценил труд Хаксли : «„Эволюция. Современный синтез“ была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе».

По объёму книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах ещё в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress ». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Ещё в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция - важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

  1. Мутации и естественный отбор - комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.
  2. Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.
  3. Репродуктивная изоляция - главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.
  4. Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространённые виды эволюционируют градуально, а малые изоляты - прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация , полиплоидия , хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) - компромисс между адаптивностью и нейтральностью.
  5. В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.
  6. Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.
  7. В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции . Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

Реальностью является и некоторая степень предсказуемости, возможность прогнозирования общих направлений эволюции (положения новейшей биологии взяты из: Николай Николаевич Воронцов , 1999, стр. 322 и 392-393).

Уверенно можно сказать, что развитие СТЭ будет продолжаться с появлением новых открытий в области эволюции.

Критика синтетической теории эволюции

Синтетическая теория эволюции не вызывает сомнений у большинства биологов: считается, что процесс эволюции в целом удовлетворительно объясняется этой теорией.

В качестве одного из критикуемых общих положений синтетической теории эволюции можно привести ее подход к объяснению вторичного сходства, то есть близких морфологических и функциональных признаков, которые не были унаследованы, а возникли независимо в филогенетически далеких ветвях эволюции организмов.

Литература

  • Воронцов Н. Н. Синтетическая теория эволюции: ее источники, основные постулаты и нерешенные проблемы // Журн. Всес. хим. о-ва им. Д. И. Менделеева. 1980. Т. 25. N 3. С. 293-312.
  • Вяткин Ю. С., Журавлев В. Б., Киселев В. Д. Эволюционная теория Дарвина и современность // На сайте Алтайского государственного университета (www.asu.ru), 2004.
  • Галл Я. М. Эволюционное учение. - «Энциклопедия Кирилла и Мефодия», 2003.
  • Грант В. , «Эволюционный процесс: Критический обзор эволюционной теории »: Пер. с англ. - М.: Мир, 1991. ISBN 5-03-001432-2
  • Гродницкий Д. Л. Две теории биологической эволюции. - Саратов, 2002.
  • Иорданский Н. Н. Эволюция жизни. М., 2001.
  • Красилов В. А. Теория эволюции: необходимость нового синтеза // Эволюционные исследования. Макроэволюция. Владивосток: 1984.
  • Майр Э. Зоологический вид и эволюция. - М., 1968.
  • Медников Б. М. , «Аксиомы биологии | Biologia axiomatica. » - М.: Знание, 1982. - (Наука и прогресс).
  • Четвериков С. С. О некоторых моментах эволюционного процесса с точки зрения современной генетики // Классики современной генетики. М.: 1968.
  • Шмальгаузен И. И. Пути и закономерности эволюционного процесса. - 2-е изд. - М., 1983. - (Сер. Избр. труды).
  • Simpson G. G. The major features of evolution. - 3-rd ed - New York, 1953.
  • Fisher R. A. The genetical theory of natural selection. - 2-nd ed. - New York, 1958.
  • Huxley J. Evolution. The modern synthesis. - 2-nd ed. - London, 1963.

Ссылки

Эволюция Доказательства эволюции
Эволюционные процессы Адаптация Преадаптация Экзаптация Абаптация Видообразование Микроэволюция Макроэволюция
Генетика популяций

Молекулярную биологию и другие.

Энциклопедичный YouTube

    1 / 5

    ✪ Эволюция - 3. Синтетическая теория эволюции - часть 1.

    ✪ Эволюция - 3. Синтетическая теория эволюции - часть 2.

    ✪ Биология 11 класс. Синтетическая теория эволюции. Работы С. Четверякова

    ✪ Теория эволюции Ламарка и Дарвина (сравнение). Урок биологии №70.

    ✪ Теория эволюции (рассказывает палеонтолог Александр Марков)

    Субтитры

Предпосылки к возникновению теории

Проблемы в оригинальной дарвиновской теории, приведшие к утере её популярности

Вскоре после возникновения теория естественного отбора подвергалась конструктивной критике со стороны её принципиальных противников, а некоторые её элементы - и со стороны её сторонников. Большинство контраргументов против дарвинизма за первую четверть века её существования было собрано в двухтомной монографии «Дарвинизм: Критическое исследование» русским философом и публицистом Н. Я. Данилевским . Нобелевский лауреат 1908 г. И. И. Мечников , соглашаясь с Дарвином по вопросу ведущей роли естественного отбора, не разделял дарвиновскую оценку важности перенаселения для эволюции. Сам основатель теории наибольшее значение придавал контраргументу английского инженера Ф. Дженкина , который с лёгкой руки Дарвина получил название «кошмар Дженкина ».

В итоге в конце XIX - начале XX веков большинство биологов принимало концепцию эволюции, но мало кто считал, что естественный отбор является главной её движущей силой. Господствовать стали неоламаркизм , теория ортогенеза и комбинация менделевской генетики с мутационной теорией Коржинского - Де Фриза . Эту ситуацию английский биолог Джулиан Хаксли окрестил «затмением дарвинизма ru en ».

Противоречия между генетикой и дарвинизмом

Несмотря на то что открытая Менделем дискретность наследственности устранила существенные затруднения, связанные с «кошмаром Дженкина», многие генетики отвергали дарвиновскую теорию эволюции.

Возникновение и развитие СТЭ

Синтетическая теория в её нынешнем виде образовалась в результате переосмысления ряда положений классического дарвинизма с позиций генетики начала XX века. После переоткрытия законов Менделя (в 1901 г.), доказательства дискретной природы наследственности и особенно после создания теоретической популяционной генетики трудами Рональда Фишера , Джона Б. С. Холдейна-младшего и Сьюэла Райта , учение Дарвина приобрело прочный генетический фундамент.

Считают, что эволюционный акт состоялся, когда отбор сохранил генное сочетание, нетипичное для предшествующей истории вида. В итоге для осуществления эволюции необходимо наличие трёх процессов:

  1. мутационного, генерирующего новые варианты генов с малым фенотипическим выражением;
  2. рекомбинационного, создающего новые фенотипы особей;
  3. селекционного, определяющего соответствие этих фенотипов данным условиям обитания или произрастания.

Все сторонники синтетической теории признают участие в эволюции трёх перечисленных факторов.

Важной предпосылкой для возникновения новой теории эволюции явилась книга английского генетика, математика и биохимика Дж. Б. С. Холдейна-младшего, издавшего её в 1932 году под названием «The causes of evolution ». Холдейн, создавая генетику индивидуального развития, сразу же включил новую науку в решение проблем макроэволюции.

Крупные эволюционные новшества очень часто возникают на основе неотении (сохранение ювенильных признаков у взрослого организма). Неотенией Холдейн объяснял происхождение человека («голая обезьяна»), эволюцию таких крупных таксонов , как граптолиты и фораминиферы . В 1933 году учитель Четверикова Н. К. Кольцов показал, что неотения в животном царстве широко распространена и играет важную роль в прогрессивной эволюции. Она ведет к морфологическому упрощению, но при этом сохраняется богатство генотипа .

Практически во всех историко-научных моделях 1937 год был назван годом возникновения СТЭ - в этом году появилась книга русско-американского генетика и энтомолога-систематика Ф. Г. Добржанского «Genetics and the Origin of Species ». Успех книги Добржанского определялся тем, что он был одновременно натуралистом и экспериментальным генетиком. «Двойная специализация Добржанского позволила ему первому перебросить твёрдый мост от лагеря экспериментальных биологов к лагерю натуралистов» (Э. Майр). Впервые было сформулировано важнейшее понятие об «изолирующих механизмах эволюции» - тех репродуктивных барьерах, которые отделяют генофонд одного вида от генофондов других видов. Добржанский ввёл в широкий научный оборот полузабытое уравнение Харди-Вайнберга . Он также внедрил в натуралистический материал «эффект С. Райта», полагая, что микрогеографические расы возникают под воздействием случайных изменений частот генов в малых изолятах, то есть адаптивно-нейтральным путём.

В англоязычной литературе среди создателей СТЭ чаще всего называют имена Ф. Добржанского , Дж. Хаксли, Э. Майра , Б. Ренша, Дж. Стеббинса. Это, конечно, далеко не полный список. Только из русских учёных, по меньшей мере, следовало бы назвать И. И. Шмальгаузена , Н. В. Тимофеева-Ресовского , Г. Ф. Гаузе , Н. П. Дубинина , А. Л. Тахтаджяна . Из британских ученых велика роль Дж. Б. С. Холдейна-младшего, Д. Лэка, К. Уоддингтона, Г. де-Бира. Немецкие историки среди активных создателей СТЭ называют имена Э. Баура, В. Циммермана, В. Людвига, Г. Хеберера и других.

Основные положения СТЭ, их историческое формирование и развитие

В 1930-1940-е годы быстро произошел широкий синтез генетики и дарвинизма. Генетические идеи проникли в систематику, палеонтологию, эмбриологию, биогеографию. Термин «современный» или «эволюционный синтез» происходит из названия книги Дж. Хаксли «» (1942). Выражение «синтетическая теория эволюции» в точном приложении к данной теории впервые было использовано Дж. Симпсоном в 1949 году.

  • элементарной единицей эволюции считается локальная популяция ;
  • материалом для эволюции являются мутационная и рекомбинационная изменчивость;
  • естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов ;
  • дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;
  • вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;
  • видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путём естественного отбора признаков, детерминированных генетически.

Активность американских создателей СТЭ была столь высока, что они быстро создали международное общество по изучению эволюции, которое в 1946 стало учредителем журнала «Evolution ». Журнал «American Naturalist » вновь вернулся к публикации работ по эволюционной тематике, делая акцент на синтезе генетики, экспериментальной и полевой биологии. В результате многочисленных и самых разнообразных исследований основные положения СТЭ прошли не только успешную проверку, но и видоизменялись, дополнялись новыми идеями.

В 1942 немецко-американский орнитолог и зоогеограф Э. Майр издал книгу «Систематика и происхождение видов», в которой была последовательно развита концепция политипического вида и генетико-географическая модель видообразования. Майр предложил принцип основателя , который в окончательной форме был им сформулирован в 1954. Если дрейф генов, как правило, дает причинное объяснение формированию нейтральных признаков во временном измерении, то принцип основателя в пространственном.

После публикации трудов Добржанского и Майра систематики получили генетическое объяснение тому, в чём они давно уже были уверены: подвиды и близкородственные виды различаются в значительной степени по адаптивно-нейтральным признакам.

Ни один из трудов по СТЭ не может сравниться с упомянутой книгой английского экспериментального биолога и натуралиста Дж. Хаксли «Evolution: The Modern synthesis » (1942 год). Труд Хаксли по объёму анализируемого материала и широте проблематики превосходит даже книгу самого Дарвина. Хаксли на протяжении многих лет держал в уме все направления в развитии эволюционной мысли, внимательно следил за развитием родственных наук и имел личный опыт генетика-экспериментатора. Видный историк биологии Провин так оценил труд Хаксли : «„Эволюция. Современный синтез“ была наиболее всесторонней по теме и документам, чем другие работы на эту тему. Книги Холдейна и Добржанского были написаны главным образом для генетиков, Майра для систематиков и Симпсона для палеонтологов. Книга Хаксли стала доминантной силой в эволюционном синтезе».

По объёму книга Хаксли не имела себе равных (645 страниц). Но самое интересное состоит в том, что все основные идеи, изложенные в книге, были очень ясно выписаны Хаксли на 20 страницах ещё в 1936, когда он послал в адрес Британской ассоциации содействия науки статью под названием «Natural selection and evolutionary progress ». В этом аспекте ни одна из публикаций по эволюционной теории, вышедшая в 1930-40-х годах, не может сравниться со статьей Хаксли. Хорошо чувствуя дух времени, Хаксли писал: «В настоящее время биология находится в фазе синтеза. До этого времени новые дисциплины работали в изоляции. Сейчас проявилась тенденция к унификации, которая является более плодотворной, чем старые односторонние взгляды на эволюцию» (1936). Ещё в трудах 1920-х годов Хаксли показал, что наследование приобретенных признаков невозможно; естественный отбор действует как фактор эволюции и как фактор стабилизации популяций и видов (эволюционный стазис); естественный отбор действует на малые и крупные мутации; географическая изоляция - важнейшее условие видообразования. Кажущаяся цель в эволюции объясняется мутациями и естественным отбором.

Основные положения статьи Хаксли 1936 года можно очень кратко изложить в такой форме:

  1. Мутации и естественный отбор - комплементарные процессы, которые по отдельности не способны создать направленные эволюционные изменения.
  2. Отбор в природных популяциях чаще всего действует не на отдельные гены, а на комплексы генов. Мутации не могут быть полезными или вредными, но их селективная ценность варьирует в разных средах. Механизм действия отбора зависит от внешней и генотипической среды, а вектор его действия от фенотипического проявления мутаций.
  3. Репродуктивная изоляция - главный критерий, свидетельствующий о завершении видообразования. Видообразование может быть непрерывным и линейным, непрерывным и дивергентным, резким и конвергентным.
  4. Градуализм и панадаптационизм не являются универсальными характеристиками эволюционного процесса. Большинству наземных растений свойственна именно прерывистость и резкое образование новых видов. Широко распространённые виды эволюционируют градуально, а малые изоляты - прерывисто и не всегда адаптивно. В основе прерывистого видообразования лежат специфические генетические механизмы (гибридизация , полиплоидия , хромосомные аберрации). Виды и надвидовые таксоны, как правило, различаются по адаптивно-нейтральным признакам. Главные направления эволюционного процесса (прогресс, специализация) - компромисс между адаптивностью и нейтральностью.
  5. В природных популяциях широко распространены потенциально преадаптивные мутации. Этот тип мутаций играет важнейшую роль в макроэволюции, особенно в периоды резких средовых перемен.
  6. Концепция скоростей действия генов объясняет эволюционную роль гетерохроний и аллометрии. Синтез проблем генетики с концепцией рекапитуляции ведет к объяснению быстрой эволюции видов, находящихся в тупиках специализации. Через неотению происходит «омоложение» таксона, и он приобретает новые темпы эволюции. Анализ соотношения онто- и филогенеза дает возможность обнаружить эпигенетические механизмы направленности эволюции.
  7. В процессе прогрессивной эволюции отбор действует в сторону улучшения организации. Главным результатом эволюции было появление человека. С возникновением человека большая биологическая эволюция перерастает в психосоциальную. Эволюционная теория входит в число наук, изучающих становление и развитие человеческого общества. Она создает фундамент для понимания природы человека и его будущего.

Широкий синтез данных сравнительной анатомии, эмбриологии, биогеографии, палеонтологии с принципами генетики был осуществлен в трудах И. И. Шмальгаузена (1939), А. Л. Тахтаджяна (1943), Дж. Симпсона (1944), Б. Ренша (1947). Из этих исследований выросла теория макроэволюции . Только книга Симпсона была опубликована на английском языке и в период широкой экспансии американской биологии, чаще всего она одна упоминается среди основополагающих трудов.

Последнее высказывание, отражающее суть нейтрализма, никак не согласуется с идеологией синтетической теории эволюции, восходящей к концепции зародышевой плазмы А. Вейсмана , с которой началось развитие корпускулярной теории наследственности. Согласно взглядам Вейсмана, все факторы развития и роста находятся в половых клетках; соответственно, чтобы изменить организм, необходимо и достаточно изменить зародышевую плазму, то есть гены. В итоге теория нейтральности наследует концепцию генетического дрейфа, порожденную неодарвинизмом, но впоследствии им оставленную.

Появились новейшие теоретические разработки, позволившие ещё больше приблизить СТЭ к реально существующим фактам и явлениям, которые её первоначальная версия не могла объяснить. Достигнутые эволюционной биологией на настоящий момент рубежи отличаются от представленных ранее постулатов СТЭ:

Постулат о популяции как наименьшей эволюирующей единице остается в силе. Однако огромное количество организмов без полового процесса остается за рамками этого определения популяции, и в этом видится значительная неполнота синтетической теории эволюции.

Естественный отбор не является единственным движителем эволюции.

Эволюция далеко не всегда носит дивергентный характер.

Эволюция не обязательно идет постепенно. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.

Макроэволюция может идти как через микроэволюции, так и своими путями.

Сознавая недостаточность репродуктивного критерия вида, биологи все ещё не могут предложить универсального определения вида как для форм с половым процессом, так и для агамных форм.

Случайный характер мутационной изменчивости не противоречит возможности существования определенной канализированности путей эволюции, возникающей как результат прошлой истории вида. Должна стать широко известной и теория номогенеза или эволюция на основе закономерностей, выдвинутая в 1922-1923 гг. Л.С. Бергом . Его дочь Р. Л. Берг рассмотрела проблему случайности и закономерности в эволюции и пришла к заключению, что «эволюция совершается по разрешенным путям» эволюции в целом удовлетворительно объясняется этой теорией.

В качестве одного из критикуемых общих положений синтетической теории эволюции можно привести её подход к объяснению вторичного сходства, то есть близких морфологических и функциональных признаков, которые не были унаследованы, а возникли независимо в филогенетически далеких ветвях эволюции организмов.

Согласно неодарвинизму , все признаки живых существ полностью определяются генотипом и характером отбора . Поэтому параллелизм (вторичное сходство родственных существ) объясняется тем, что организмы унаследовали большое количество одинаковых генов от своего недавнего предка, а происхождение конвергентных признаков целиком приписывается действию отбора. Вместе с тем, хорошо известно, что черты сходства, развивающиеся в достаточно удалённых линиях, часто бывают неадаптивны и поэтому не могут быть правдоподобно объяснены ни естественным отбором, ни общим наследованием. Независимое возникновение одинаковых генов и их сочетаний заведомо исключается, поскольку мутации и рекомбинация - случайные процессы.

В ответ на такую критику сторонники синтетической теории могут возразить, что представления С. С. Четверикова и Р. Фишера о полной случайности мутаций в настоящее время значительно пересмотрены. Мутации случайны лишь по отношению к среде обитания, но не к существующей организации генома . Сейчас представляется вполне естественным, что разные участки ДНК обладают различной устойчивостью; соответственно, одни мутации будут возникать чаще, другие - реже. Кроме того, набор нуклеотидов весьма ограничен. Следовательно, существует вероятность независимого (и притом вполне случайного, беспричинного) появления одинаковых мутаций (вплоть до синтеза далекими друг от друга видами одного и аналогичных белков, которые не могли достаться им от общего предка). Эти и другие факторы обуславливают значительную вторичную повторяемость в структуре ДНК и могут объяснять происхождение неадаптивного сходства с позиций неодарвинизма как случайного выбора из ограниченного числа возможностей.

Другой пример - критика СТЭ сторонниками мутационной эволюции - связан с концепцией пунктуализма или «прерывистого равновесия». Пунктуализм основан на простом палеонтологическом наблюдении: продолжительность стазиса на несколько порядков превышает длительность перехода из одного фенотипического состояния в другое. Судя по имеющимся данным, это правило в общем справедливо для всей ископаемой истории многоклеточных животных и имеет достаточное количество подтверждений.

Авторы пунктуализма противопоставляют свой взгляд градуализму - представлению Дарвина о постепенной эволюции путём мелких изменений - и считают прерывистое равновесие достаточным поводом для отрицания всей синтетической теории. Столь радикальный подход вызвал дискуссию вокруг концепции прерывистого равновесия, длящуюся уже 30 лет. Большинство авторов сходится на том, что между понятиями «постепенная» и «прерывистая» имеется лишь количественная разница: длительный процесс предстает мгновенным событием, будучи изображен на сжатой временной шкале. Поэтому пунктуализм и градуализм следует рассматривать как дополнительные понятия. Кроме того, сторонники синтетической теории справедливо отмечают, что прерывистое равновесие не создает для них дополнительных трудностей: длительный стазис можно объяснять действием стабилизирующего отбора (под действием стабильных, относительно неизменных условий существования), а быстрое изменение - теорией смещающегося равновесия С. Райта для малых популяций, при резких изменениях условий существования и/или в случае прохождения вида или какой-либо его изолированной части, популяции, через бутылочное горлышко ISBN 5-03-001432-2

  • Шмальгаузен И. И. Пути и закономерности эволюционного процесса. - 2-е изд. - М., 1983. - (Сер. Избр. труды).
  • Simpson G. G. The major features of evolution. - 3-rd ed - New York, 1953.
  • Fisher R. A. The genetical theory of natural selection. - 2-nd ed. - New York, 1958.
  • Huxley J. Evolution. The modern synthesis. - 2-nd ed. - London, 1963.