Как вычислить точку пересечения двух прямых. Алгоритм определения попадания точки в контур на основе комплексного анализа

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .


При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Решение.

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M 0 (4, 2) x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду , а уже после этого находить координаты точки пересечения.

Пример.

и .

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения :

Ответ:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Пример.

Определите координаты точки пересечения прямых и .

Решение.

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

Ответ:

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Пример.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Решение.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Ответ:

Уравнения и определяют в прямоугольной системе координат Oxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Пример.

Найдите координаты точки пересечения прямых и , если это возможно.

Решение.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения , так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

- нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

Ответ:

Координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Пример.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Решение.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, 2x-1=0 и .

Ответ:

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Рассмотрим решения примеров.

Пример.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Решение.

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим А и ранг матрицы T . Используем

Рассмотрим следующий рисунок.

На нем изображен график функции y = x^3 – 3*x^2. Рассмотрим некоторый интервал содержащий точку х = 0, например от -1 до 1. Такой интервал еще называют окрестностью точки х = 0. Как видно на графике, в этой окрестности функция y = x^3 – 3*x^2 принимает наибольшее значение именно в точке х = 0.

Максимум и минимум функции

В таком случае, точку х = 0 называют точкой максимума функции. По аналогии с этим, точку х = 2 называют точкой минимума функции y = x^3 – 3*x^2. Потому что существует такая окрестность этой точки, в которой значение в этой точке будет минимальным среди всех других значений из этой окрестности.

Точкой максимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) < f(x0).

Точкой минимума функции f(x) называется точка x0, при условии, что существует окрестность точки х0 такая, что для всех х не равных х0 из этой окрестности, выполняется неравенство f(x) > f(x0).

В точках максимума и минимума функций значение производной функции равно нулю. Но это не достаточное условие для существования в точке максимума или минимума функции.

Например, функция y = x^3 в точке х = 0 имеет производную равную нулю. Но точка х = 0 не является точкой минимума или максимума функции. Как известно функция y = x^3 возрастает на всей числовой оси.

Таким образом, точки минимума и максимума всегда будут находиться среди корне уравнения f’(x) = 0. Но не все корни этого уравнения будут являться точками максимума или минимума.

Стационарные и критические точки

Точки, в которых значение производной функции равно нулю, называются стационарными точками. Точки максимума или минимума могут иметься и вточках, в которых производной у функции вообще не существует. Например, у = |x| в точке х = 0 имеет минимум, но производной в этой точке не существует. Эта точка будет являться критической точкой функции.

Критическими точками функции называются точки, в которых производная равна нулю, либо производной в этой точке не существует, то есть функция в этой точке недифференцируема. Для того чтобы найти максимум или минимум функции необходимо выполнение достаточного условия.

Пусть f(x) некоторая дифференцируемая на интервале (a;b) функция. Точка х0 принадлежит этому интервалу и f’(x0) = 0. Тогда:

1. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «плюса» на «минус», тогда точка х0 является точкой максимума функции.

2. если при переходе через стационарную точку х0 функция f(x) и её производная меняет знак, с «минуса» на «плюс», тогда точка х0 является точкой минимума функции.

Критические точки – это точки в которых производная функции равна нулю или не существует. Если производная равна 0 то функция в этой точке принимает локальный минимум или максимум . На графике в таких точках функция имеет горизонтальную асимптоту, то есть касательная параллельна оси Ох .

Такие точки называют стационарными . Если видите на графике непрерывной функции «горб» или «яму» помните, что максимум или минимум достигается в критической точке. Рассмотрим для примера следующее задание.

Пример 1. Найти критические точки функции y=2x^3-3x^2+5 .
Решение. Алгоритм нахождения критических точек следующий:

Итак функция имеет две критические точки.

Далее, если нужно провести исследование функции то определяем знак производной слева и справа от критической точки. Если производная при переходе через критическую точку меняет знак с «-» на «+» , то функция принимает локальный минимум . Если с «+» на «-» должны локальный максимум .

Второй тип критических точек это нули знаменателя дробных и иррациональных функций

Функции с логарифмами и тригонометрические, которые не определены в этих точках


Третий тип критических точек имеют кусочно-непрерывные функции и модули.
Например любая модуль-функция имеет минимум или максимум в точке излома.

Например модуль y = | x -5 | в точке x = 5 имеет минимум (критическую точку).
Производная в ней не существует, а справа и слева принимает значение 1 и -1 соответственно.

Попробуйте определить критические точки функций

1)
2)
3)
4)
5)

Если в ответе у Вы получите значение
1) x=4;
2) x=-1;x=1;
3) x=9;
4) x=Pi*k;
5) x=1.
то Вы уже знаете как найти критические точки и сможете справиться с простой контрольной или тестами.

Я боюсь, что не знаком с библиотеками, которые вы используете, но я думаю, что у меня есть разумная идея для алгоритма, который вы могли бы использовать, и я просто займусь тем, как я буду реализовывать это с помощью vanilla python, а затем Я уверен, что вы можете улучшить его и реализовать с помощью этих библиотек. Кроме того, я не утверждаю, что это лучший способ добиться этого, но я хотел получить ответ в разумной степени, так что вот здесь.

Теперь идея исходит из использования кросс-произведения двух векторов в алгоритмах для нахождения выпуклого множества множества точек, например. Graham Scan . Скажем, мы имеем две точки p1 и p2, которые определяют точечные векторы p1 и p2 , начиная с начала (0,0) до (x1, y1) и (x2, y2) соответственно. Перекрестное произведение p1 x p2 дает третий вектор p3 , который перпендикулярен как p1 , так и p2 и имеет величину, заданную площадью параллелограмма, ограниченного векторами.

Очень полезный результат состоит в том, что определитель матрицы

/ x1, x2 \ \ y1, y2 /

Который является x1 * y2 - x2 * y1, дает величину вектора p3 , а знак указывает, является ли p3 "выходящим" из плоскости или "входить" в него. Ключевым моментом здесь является то, что если эта величина положительная, то p2 находится "слева" от p1 , а если она отрицательная, то p2 вправо " p1 .

Надеюсь, этот пример искусства ascii поможет:

P2(4, 5) / / / /_ _ _ _ _. p1(5, 0)

x1 * y2 - x2 * y1 = 5 * 4 - 0 * 5 = 20, и поэтому p2 находится "слева" от p1

Наконец, почему это полезно для нас! Если у нас есть список вершин многоугольника и множество других точек графа, то для каждого ребра многоугольника мы можем получить вектор этого ребра. Мы также можем получить векторы, соединяющие стартовую вершину со всеми остальными точками графа и путем проверки того, лежат ли они слева или справа от края, мы можем исключить некоторые точки для каждого ребра. Все те, которые не удалены в конце процесса, это те точки внутри многоугольника. Во всяком случае, на какой-то код, чтобы сделать это более понятным!

Получите список вершин вашего многоугольника в том порядке, в котором вы их посещали, если бы вы рисовали их против часовой стрелки, например, какой-то пятиугольник мог бы быть:

poly = [(1, 1), (4, 2), (5, 5), (3, 8), (0, 4)]

Получите набор, содержащий все остальные точки на графике, мы постепенно удалим недопустимые точки из этого набора, пока те, которые остались в конце процесса, не будут точно такими точками, которые находятся внутри многоугольника.

points = set(["(3, 0), (10, -2), (3,3), ...])

Основной бит самого кода на самом деле довольно компактен для того, как долго мне приходилось писать о том, как он работает. to_right принимает два кортежа, представляющих векторы, и возвращает True , если v2 лежит справа от v1 . Затем петли проходят через все края многоугольника и удаляют точки из рабочего набора, если они находятся справа от любого из ребер.

Def to_right(v1, v2): return (v1*v2 - v1*v2) < 0 for i in range(len(poly)): v1 = poly v2 = poly[i] for p in points: if(to_right(v2-v1, p-v1)): points.remove(p)

edit: Чтобы прояснить, тот факт, что они удалены, если они справа, а не слева, связаны с порядком, в котором указаны вершины многоугольника. Если бы они были в порядке по часовой стрелке, вам нужно было бы исключить левые точки вместо этого. На данный момент у меня нет особого решения этой проблемы.

В любом случае, надеюсь, что я прав по этому поводу, и это может помочь кому-то, даже если не OP. Асимптотическая сложность этого алгоритма равна O (mn), где n - количество точек в графе, а m - количество вершин многоугольника, так как в худшем случае все точки лежат внутри многоугольника, и мы должны проверять каждую точку для каждого ребра, при этом никто не удаляется.