Прямые и непрямые вирусологические методы исследования. Вирусологические методы исследования в микробиологии

Вирусологические методы исследования - методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в е вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса а, дикого или вакцинного штамма вируса а и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект),

образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов а, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия,

а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- m -антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования ): реакции связывания комплемента,

торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология, М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер. с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.

Исследования для диагностики заболеваний с вирусной природой. Это необходимо, чтобы идентифицировать вирус, изучить его биологию и способность воздействовать на клетки животного и человека. Таким образом, появляется возможность понять патогенез вирусных заболеваний и, соответственно, правильно выбрать методику лечения.

В чем заключается диагностика?

В живых клетках. Чтобы его исследовать, необходимо культивирование на уровне подопытного организма или Для этого в медицинской практике и микробиологии в целом проводятся вирусологические методы исследования, которые имеют следующие основные подходы:

  • прямой;
  • непрямой;
  • серологический.

Материал могут исследовать непосредственно на наличие нуклеиновых кислот, вирусного антигена или, например, изолировать и идентифицировать вирус из клинического материала.

Кроме возможности установить этиологию заболевания, мониторинга терапевтического эффекта, вирусологические методы исследования играют большую роль в противоэпидемических мероприятиях. Для выделения и используют куриные эмбрионы, лабораторных животных или культуры клеток.

Как исследуют?

Самый быстрый - это прямой метод. Он позволяет обнаружить вирус, антиген или НК (нуклеиновую кислоту) в самом клиническом материале. Занимает время от двух часов до суток.

  1. ЭМ - электронная микроскопия. Обнаруживает непосредственно вирус.
  2. ИЭМ - иммунная электронная микроскопия. Использует специфические антитела к вирусам.
  3. РИФ - реакция иммунофлюоресценции. Использует антитела, связанные с красителем. Такие вирусологические методы исследования широко применяются в качестве быстрой расшифровки этиологии ОРВИ (острых респираторных вирусных инфекций), когда берут мазки-отпечатки со слизистой оболочки верхних дыхательных путей.
  4. ИФА - иммуноферментный анализ - определение вирусных антигенов, похожее на РИФ, но основанное на мечении антител ферментами.
  5. РИА - радиоиммунный анализ. Использует метку антител радиоизотопами для обеспечения высокой чувствительности в определении вирусного антигена.
  6. Молекулярный - гибридизация НК или выделение геномов вируса при помощи ПЦР (полимеразной цепной реакции).
  7. Цитология - применяется редко, но при определенных инфекциях эти вирусологические методы исследования очень эффективны. Исследуются материалы биопсии, аутопсии и мазки, обрабатываемые с целью окрашивания и анализа под микроскопом.

В чем смысл исследований?

Для успешного выделения вирусов клинический материал берут в соответствии с патогенезом и как можно раньше. Часто этот процесс требует проведения нескольких пассажей, прежде чем применить определенные вирусологические методы исследования.

Микробиология изучает микроскопические существа. И ее область - это не только медицина. Она является основополагающей наукой для сельского хозяйства, ветеринарии, космической и технической промышленности, геологии.

Но безусловно все создано для человека и его развития на этой прекрасной планете. Поэтому очень важно вовремя обнаружить опасность и нейтрализовать ее. Вирусы отличны от бактерий. Это структуры, попадающие в организм и вызывающие образование нового поколения. Они похожи на кристаллы и направлены на управление процессом своего размножения, хотя сами не питаются, не растут и не выделяют продуктов обмена.

Вирус способен вызвать тяжелое заболевание у любого живого организма, в который он попал. К тому же он может эволюционировать. Именно поэтому вирусологические методы исследования в микробиологии должны развиваться и совершенствоваться, так как под угрозой может быть человеческая цивилизация в целом.

Материалы

Для обнаружения и идентификации вирусов в медицине, как правило, берутся:

  • носоглоточный смыв (респираторные инфекции);
  • смыв и фекалии (энтеровирусные инфекции);
  • соскобы, содержимое пузырьков (поражения кожи, слизистых оболочек, как герпес, ветряная оспа);
  • смывы (экзантемные инфекции, как корь, краснуха);
  • кровь, спинномозговая жидкость (арбовирусные инфекции).

Фазы

Все этапы вирусологического метода исследования включают в себя:

  • забор материала;
  • выбор, получение тест-системы, определение ее жизнеспособности;
  • заражение тест-системы;
  • индикация вируса;
  • определение типа вируса.

В основном, патогенные вирусы отличаются наличием тканевой и типовой специфичности. Взять, к примеру, полиовирус, который репродуцируется только у приматов (в их клетках). Соответственно, для выделения определенного вируса используют определенную культуру ткани. Если речь идет о неизвестном возбудителе, то целесообразно будет одномоментно заразить три, а лучше четыре культуры клеток.

Таким образом, возможно, одна из них окажется чувствительной. Чтобы определить наличие вируса в зараженных культурах, смотрят на развитие специфической дегенерации клеток, внутриклеточные включения, выявление специфического антигена, положительные реакции гемагглютинации и гемадсорбции.

Все вирусологические методы исследования (прямые и непрямые, серологические) должны быть выбраны, как наиболее подходящие для конкретного случая предполагаемого инфицирования.

Непрямые методы основываются на выделении и идентификации вируса. Они трудоемкие, длительные, но точные.

Серодиагностика

Под такой диагностикой подразумевается метод, основанный на реакции антиген-антитело. Чаще всего используют парные сыворотки крови, взятые с интервалом в несколько недель. Если нарастание титра антител в 4 и больше раз, реакцию считают за положительную. Чтобы определить типоспецифичность вируса, применяют реакцию вируснейтрализации. Для определения группоспецифичности нужно получить реакцию связывания комплемента.

Широко используют различные варианты иммуноферментного анализа, реакции торможения гемагглютинации, пассивной гемагглютинации, обратной пассивной гемагглютинации, РИФ. Еще в генной инженерии был разработан метод получения моноклональных антител. Преодолеть узкую специфичность моноклонов можно применением нескольких моноклональных антител к различным вирусным детерминантам. Таким образом, была повышена специфичность и чувствительность исследования с определением антигенов.

Некоторые особенности

Сегодня создано много разных тест-систем для иммунологической диагностики инфекций, возникших вследствие попадания вируса в живой организм.

Таким образом, вирусологические методы исследования - это способы выделения вирусов, изучение их свойств и установление их этиологической связи с определенными заболеваниями.

Вирусологи ческие ме тоды иссле дования — методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные — в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его — клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2—3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов — новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3—5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- m -антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования ): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую — через 2—3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген — антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций — изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

методы изучения биологии вирусов и их идентификации. В вирусологии широко используются методы молекулярной биологии, с помощью которых удалось установить молекулярную структуру вирусных частиц, способы проникновения их в клетку и особенности репродукции вирусов, первичной структуры вирусных нуклеиновых кислот и белков. Развиваются методы определения последовательности составляющих элементов вирусных нуклеиновых кислот и аминокислот белка. Появляется возможность связать функции нуклеиновых кислот и кодируемых ими белков с последовательностью нуклеотидов и установить причины внутриклеточных процессов, играющих важную роль в патогенезе вирусной инфекции.

Вирусологические методы исследования основаны также на иммунологических процессах (взаимодействие антигена с антителами), биологических свойствах вируса (способность к гемагглютинации, гемолизу, ферментативная активность), особенностях взаимодействия вируса с клеткой-хозяином (характер цитопатического эффекта, образование внутриклеточных включений и т.д.).

В диагностике вирусных инфекций, при культивировании, выделении и идентификации вирусов, а также при получении вакцинных препаратов широко применяют метод культуры ткани и клеток. Используют первичные, вторичные, стабильные перевиваемые и диплоидные клеточные культуры. Первичные культуры получают при диспергировании ткани протеолитическими ферментами (трипсином, коллагеназой). Источником клеток могут быть ткани и органы (чаще почки) эмбрионов человека и животных. Суспензию клеток в питательной среде помещают в так называемые матрацы, бутыли или чашки Петри, где после прикрепления к поверхности сосуда клетки начинают размножаться. Для заражения вирусами используют обычно клеточный монослой. Питательную жидкость сливают, вносят вирусную суспензию в определенных разведениях и после контакта с клетками добавляют свежую питательную среду, обычно без сыворотки.

Клетки большинства первичных культур могут быть пересеяны, такая культура называется вторичной. При дальнейшем пассировании клеток формируется популяция фибробластоподобных клеток, способных к быстрому размножению, большая часть которых сохраняет исходный набор хромосом. Это так называемые диплоидные клетки. При серийном культивировании клеток получают стабильные перевиваемые клеточные культуры. При пассажах появляются быстро делящиеся однородные клетки с гетероплоидным набором хромосом. Стабильные линии клеток могут быть однослойными и суспензионными. Однослойные культуры растут в виде сплошного слоя на поверхности стекла, суспензионные - в виде суспензий в различных сосудах с использованием перемешивающих устройств. Существует более 400 линий клеток, полученных от 40 различных видов животных (в т.ч. от приматов, птиц, рептилий, амфибий, рыб, насекомых) и человека.

В искусственных питательных средах можно культивировать кусочки отдельных органов и тканей (органные культуры). Эти типы культур сохраняют структуру ткани, что особенно важно для выделения и пассирования вирусов, которые не репродуцируются в недифференцированных тканевых культурах (например, коронавирусы).

В зараженных клеточных культурах вирусы можно обнаружить по изменению морфологии клеток, цитопатическому действию, которое может иметь специфический характер, появлению включений, путем определения вирусных антигенов в клетке и в культуральной жидкости; установления биологических свойств вирусного потомства в культуральной жидкости и титрования вирусов в культуре ткани, куриных эмбрионах или на чувствительных животных; путем выявления отдельных вирусных нуклеиновых кислот в клетках методом молекулярной гибридизации или скоплений нуклеиновых кислот цитохимическим методом с помощью люминесцентной микроскопии.

Выделение вирусов является трудоемким и длительным процессом. Его осуществляют с целью определения циркулирующего среди населения типа или варианта вируса (например, для идентификации сероварианта вируса гриппа, дикого или вакцинного штамма вируса полиомиелита и т.д.); в случаях, когда это необходимо для проведения срочных эпидемиологических мероприятий; при появлении новых типов или вариантов вирусов; при необходимости подтверждения предварительного диагноза; для индикации вирусов в объектах окружающей среды. При выделении вирусов учитывают возможность их персистирования в организме человека, а также возникновения смешанной инфекции, вызванной двумя и более вирусами. Генетически однородная популяция вируса, полученная от одного вириона, называется вирусным клоном, а сам процесс получения его - клонированием.

Для выделения вирусов применяют заражение восприимчивых лабораторных животных, куриных эмбрионов, но чаще всего используют культуру ткани. Наличие вируса обычно определяют по специфической дегенерации клеток (цитопатический эффект), образованию симпластов и синцитиев, обнаружению внутриклеточных включений, а также специфического антигена, выявляемого с помощью методов иммунофлюоресценции, гемадсорбции, гемагглютинации (у гемагглютинирующих вирусов) и т.д. Эти признаки могут обнаруживаться лишь после 2-3 пассажей вируса.

Для выделения ряда вирусов, например вирусов гриппа, используют куриные эмбрионы, для выделения некоторых вирусов Коксаки и ряда арбовирусов - новорожденных мышей. Идентификацию выделенных вирусов проводят с помощью серологических реакций и других методов.

При работе с вирусами определяют их титр. Титрование вирусов проводят обычно в культуре ткани, определяя наибольшее разведение вируссодержащей жидкости, при котором происходит дегенерация ткани, образуются включения и вирусоспецифические антигены. Для титрования ряда вирусов можно использовать метод бляшек. Бляшки, или негативные колонии вирусов, представляют собой очаги разрушенных под действием вируса клеток однослойной культуры ткани под агаровым покрытием. Подсчет колоний позволяет провести количественный анализ инфекционной активности вирусов из расчета, что одна инфекционная частица вируса образует одну бляшку. Бляшки выявляют путем окрашивания культуры прижизненными красителями, обычно нейтральным красным; бляшки не адсорбируют краситель и поэтому видны как светлые пятна на фоне окрашенных живых клеток. Титр вируса выражают числом бляшкообразующих единиц в 1 мл .

Очистку и концентрацию вирусов обычно осуществляют путем дифференциального ультрацентрифугирования с последующим центрифугированием в градиентах концентраций или плотности. Для очистки вирусов применяют иммунологические методы, ионно-обменную хроматографию, иммуносорбенты и т.д.

Лабораторная диагностика вирусных инфекций включает обнаружение возбудителя или его компонентов в клиническом материале; выделение вируса из этого материала; серодиагностику. Выбор метода лабораторной диагностики в каждом отдельном случае зависит от характера заболевания, периода болезни и возможностей лаборатории. Современная диагностика вирусных инфекций основана на экспресс-методах, позволяющих получать ответ через несколько часов после взятия клинического материала в ранние сроки после заболевания, К ним относятся электронная и иммунная электронная микроскопия, а также иммунофлюоресценция, метод молекулярной гибридизации, выявление антител класса lgM и др.

Электронная микроскопия вирусов, окрашенных методом негативного контрастирования, позволяет дифференцировать вирусы и определять их концентрацию. Применение электронной микроскопии в диагностике вирусных инфекций ограничивается теми случаями, когда концентрация вирусных частиц в клиническом материале достаточно высокая (10 5 в 1 мл и выше). Недостатком метода является невозможность отличать вирусы, принадлежащие к одной таксономической группе. Этот недостаток устраняется путем использования иммунной электронной микроскопии. Метод основан на образовании иммунных комплексов при добавлении специфической сыворотки к вирусным частицам, при этом происходит одновременная концентрация вирусных частиц, позволяющая идентифицировать их. Метод применяют также для выявления антител. В целях экспресс-диагностики проводят электронно-микроскопическое исследование экстрактов тканей, фекалий, жидкости из везикул, секретов из носоглотки. Электронную микроскопию широко используют для изучения морфогенеза вируса, ее возможности расширяются при применении меченых антител.

Метод молекулярной гибридизации, основанный на выявлении вирусоспецифических нуклеиновых кислот, позволяет обнаружить единичные копии генов и по степени чувствительности не имеет себе равных. Реакция основана на гибридизации комплементарных нитей ДНК или РНК (зондов) и формировании двунитчатых структур. Наиболее дешевым зондом является клонированная рекомбинантная ДНК. Зонд метят радиоактивными предшественниками (обычно радиоактивным фосфором). Перспективно использование колориметрических реакций. Существует несколько вариантов молекулярной гибридизации: точечная, блот-гибридизация, сэндвич-гибридизация, гибридизация in situ и др.

Антитела класса lgM появляются раньше, чем антитела класса G (на 3-5-й день болезни) и исчезают через несколько недель, поэтому их обнаружение свидетельствует о только что перенесенной инфекции. Антитела класса lgM выявляют методом иммунофлюоресценции или с помощью иммуноферментного анализа, используя анти- μ-антисыворотки (сыворотки против тяжелых цепей lgM).

Серологические методы в вирусологии основаны на классических иммунологических реакциях (см. Иммунологические методы исследования): реакции связывания комплемента, торможения гемагглютинации, биологической нейтрализации, иммунодиффузии, непрямой гемагглютинации, радиального гемолиза, иммунофлюоресценции, иммуноферментного, радиоиммунного анализа. Разработаны микрометоды многих реакций, техника их непрерывно совершенствуются. Эти методы используют для идентификации вирусов с помощью набора известных сывороток и для серодиагностики с целью определения нарастания антител во второй сыворотке по сравнению с первой (первую сыворотку берут в первые дни после заболевания, вторую - через 2-3 нед.). Диагностическое значение имеет не менее чем четырехкратное нарастание антител во второй сыворотке. Если выявление антител класса lgM свидетельствует о недавно перенесенной инфекции, то антитела класса lgC сохраняются в течение нескольких лет, а иногда и пожизненно.

Для идентификации индивидуальных антигенов вирусов и антител к ним в сложных смесях без предварительной очистки белков используют иммуноблоттинг. Метод сочетает фракционирование белков с помощью электрофореза в полиакриламидном геле с последующей иммуноиндикацией белков иммуноферментным методом. Разделение белков снижает требования к химической чистоте антигена и позволяет выявлять индивидуальные пары антиген - антитело. Такая задача актуальна, например, при серодиагностике ВИЧ-инфекции, где ложноположительные реакции иммуноферментного анализа обусловлены наличием антител к клеточным антигенам, которые присутствуют в результате недостаточной очистки вирусных белков. Идентификация антител в сыворотках больных к внутренним и наружным вирусным антигенам позволяет определять стадию заболевания, а при анализе популяций - изменчивость вирусных белков. Иммуноблоттинг при ВИЧ-инфекции применяют как подтверждающий тест для выявления индивидуальных вирусных антигенов и антител к ним. При анализе популяций метод используют для определения изменчивости вирусных белков. Большая ценность метода заключается в возможности анализа антигенов, синтезируемых с помощью технологии рекомбинантных ДНК, установлении их размеров и наличия антигенных детерминант.

Библиогр.: Букринская А.Г. Вирусология, М., 1986; Вирусология, Методы, под ред. Б. Мейхи, пер. с англ., М., 1988; Справочник по микробиологическим и вирусологическим методам исследования, под ред. М.О. Биргера, М., 1982.

  • - методы обезвреживания отбросов, содержащих органические вещества, основанные на их разогревании в результате жизнедеятельности термофильных аэробных микроорганизмов...

    Медицинская энциклопедия

  • - гистохимические методы выявления ферментов, основанные на реакции образования осадков фосфата кальция или магния в местах локализации ферментативной активности при инкубации срезов тканей с органическими...

    Медицинская энциклопедия

  • - методы выявления гистиоцитов в препаратах нервной ткани и различных органов с помощью аммиачного серебра или пиридиново-содовых растворов серебра...

    Медицинская энциклопедия

  • - методы оценки предположений о характере наследования, основанные на сопоставлении наблюдаемых и ожидаемых соотношений больных и здоровых в семьях, отягощенных наследственными болезнями, с учетом способа...

    Медицинская энциклопедия

  • - применяются для изучения строения и функции клеток и тканей человека, животных и растительных организмов в норме, патологии и эксперименте...

    Медицинская энциклопедия

  • - методы идентификации химических веществ в гистологических срезах. Составной частью Г. м. и. являются цитохимические методы, выявляющие химические вещества в клетках приготовленных мазков и отпечатков...

    Медицинская энциклопедия

  • - методы количественного и качественного определения глюкозы в крови и моче, основанные на окислении глюкозы кислородом воздуха в присутствии фермента глюкозооксидазы...

    Медицинская энциклопедия

  • - диагностические методы исследования, основанные на специфическом взаимодействии антигенов и антител...

    Медицинская энциклопедия

  • - методы выявления волокнистых структур соединительной ткани и нейроглии в гистологических препаратах, основанные на их многоцветной окраске...

    Медицинская энциклопедия

  • - 1) метод окраски гистологических препаратов дермы с помощью гемалауна Майера, раствора калийных квасцов и родамина; ядра клеток окрашиваются в синий цвет, элеидин - в красный...

    Медицинская энциклопедия

  • - в медицине - совокупность методов количественного изучения и анализа состояния и поведения объектов и систем, относящихся к медицине и здравоохранению...

    Медицинская энциклопедия

  • - способы изучения различных объектов с помощью микроскопа...

    Медицинская энциклопедия

  • - основаны на использовании законов оптики, касающихся природы, распространения и взаимодействия с веществом электромагнитного излучения оптического диапазона...

    Медицинская энциклопедия

  • - методы исследования и оценки качества объектов кружающей среды с помощью органов чувств...

    Медицинская энциклопедия

  • - общее название ряда методов импрегнации гистологических препаратов серебром для выявления глиальных и других аргирофильных волокон...

    Медицинская энциклопедия

  • - назначаются следователем и судом для разрешения специальных вопросов, возникающих при расследовании преступлений и рассмотрении гражданских дел. Они проводятся также по предложению судебно-медицинских...

    Медицинская энциклопедия

"Вирусологи́ческие ме́тоды иссле́дования" в книгах

Rage Against The Machine Killing In The Name (1992)

автора Цалер Игорь

Rage Against The Machine Killing In The Name (1992) Первый альбом лос-анджелесской группы Rage Against The Machine объединил хип-хоп и хард-рок, сдобрив их злободневными политическими манифестами и, что приятно, немалой дозой плотного фанкового ритма. В песне «Убивая во имя», вошедшей в первый сингл,

James Brown Get Up (I Feel Like Being A) Sex Machine (1970)

Из книги Популярная музыка XX века: джаз, блюз, рок, поп, кантри, фолк, электроника, соул автора Цалер Игорь

James Brown Get Up (I Feel Like Being A) Sex Machine (1970) К концу 1960-х годов Джеймс Браун взялся за эксперименты. Душераздирающий соул с группой The Famous Flames сменился тренькающим фанком с The J.B.’s. Одной из важнейших вех надвигающейся фанк-эпохи стала «Секс-машина», которая в десятиминутном варианте

Rage Against The Machine («Ярость Против Машин»)

Из книги Против невозможного (сборник статей о культуре) автора Колташов Василий Георгиевич

Rage Against The Machine («Ярость Против Машин») Том Морелло: «Наша цель - помочь людям освободиться от цепей лжи и насилия, которыми их опутали правительства, международные корпорации, масс-медиа и политические партии, дать людям во всем мире чувство уверенности в завтрашнем дне и

Welcome to the machine

Из книги Время колокольчиков автора Смирнов Илья

Welcome to the machine Начало перестройки в нашей истории мы можем датировать январем 1987-го года. Тогда состоялся либеральный Пленум ЦК, а мы получили возможность напечатать в «Юности» неотредактированный список современных «звезд» советского рока, включая ДДТ, ОБЛАЧНЫЙ КРАЙ и

Toyoda Machine Works

Из книги Гемба кайдзен. Путь к снижению затрат и повышению качества автора Имаи Масааки

Toyoda Machine Works По словам Ёсио Симы, директора Toyoda Machine Works, выгода от создания системы качества и стандартов для его обеспечения стала очевидной в 1980-е годы, когда компания, чтобы получить премию Деминга (Deming Prize), внедрила концепцию «всеобщего менеджмента на основе качества»

Машина (Machine)

Из книги Философский словарь автора Конт-Спонвиль Андре

Машина (Machine) «Если бы челноки ткали сами собой, – заметил однажды Аристотель, – ремесленникам не нужны были бы рабочие, а хозяевам – рабы» («Политика», I, 4). Это приблизительно и есть то, что мы называем машиной – способный двигаться предмет, лишенный души (автомат) и

Из книги Интернет-разведка [Руководство к действию] автора Ющук Евгений Леонидович

Архив сайтов Internet Archive Wayback Machine Электронный адрес – http://web.archive.org.Каждый, кто собирал информацию по интересующей его проблеме за достаточно длительный период, знает, как порой бывает важно найти сведения, опубликованные на сайте несколько лет назад. Иногда это просто

Архив сайтов Internet Archive Wayback Machine

Из книги Противодействие черному PR в Интернете автора Кузин Александр Владимирович

Архив сайтов Internet Archive Wayback Machine Очень часто нападение черных пиарщиков происходит неожиданно для вас. В таком случае вы впервые сталкиваетесь с необходимостью пристального изучения противника. В случае если вы даже предполагали подобное развитие событий (например, в

4.9. Резервное копирование с помощью Time Machine

автора Скрылина Софья

4.9. Резервное копирование с помощью Time Machine Операционная система Mac OS X Leopard позволяет выполнять регулярное резервное копирование данных на вашем компьютере с помощью приложения Time Machine (Машина времени). После соответствующих настроек приложение автоматически будет

4.9.2. Создание первой резервной копии с помощью Time Machine

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

4.9.2. Создание первой резервной копии с помощью Time Machine Прежде чем перейти к созданию первой резервной копии, следует вставить внешний диск или иметь свободный раздел жесткого диска, отведенный только для резервного копирования.При подключении внешнего диска размером,

4.9.4. Использование Time Machine

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

4.9.4. Использование Time Machine Когда необходимые настройки Time Machine выполнены и создано некоторое количество резервных копий, можно приступить к поиску и восстановлению ранних версий файлов. Для этого:1. Откройте окно Finder и выделите файл, необходимый для восстановления.2. Если

Вирусы в отличие от бактерий размножаются лишь в живых клетках. В связи с этим культивирование вирусов может осуществляться на уровне организма подопытного животного (куриный эмбрион как развивающийся организм относят к подопытным животным) или живой клетки, выращиваемой вне организма, т.е. на уровне культуры клеток.

Использование лабораторных животных. Один из методов выделения и культивирования вирусов - заражение лабораторных животных. Их используют для выделения вирусов, не вызывающих развития цитопатических изменений в культурах клеток и не размножающихся в куриных эмбрионах. Применение лабораторных животных позволяет также по клиническому симптомокомплексу идентифицировать характер вирусной инфекции. В качестве лабораторных животных, в зависимости от целей работ и вида исследуемых вирусов, чаще всего применяют белых мышей, хомяков, морских свинок, кроликов. Из более крупных животных используют обезьян различных видов и некоторых других животных. Из птиц используют кур, гусей, уток. В последние годы чаще применяют новорожденных животных (более чувствительных к вирусам), «стерильных животных» (извлекают из матки и содержат в стерильных условиях с использованием стерильного воздуха и стерилизованного корма) и животных чистых линий с известной наследственностью (инбредные или линейные животные).

В эксперимент берут только здоровых животных, лучше из одного питомника и одной партии. Температуру тела измеряют в одно и то же время, так как имеются суточные колебания ее. Исследуемый материал вводят с учетом тропизма вирусов к определенным тканям. Так, для выделения нейтротропных вирусов материал вводят в мозг, для выделения пневмотропных - через нос (под легким эфирным наркозом).

У лабораторных животных после заражения вируссодержащим материалом важно своевременно и правильно взять материал для дальнейшего исследования, причем асептически. Результаты выделения вируса считают положительными, если у животного после соответствующего инкубационного периода развиваются симптомы инфекции.

Использование куриных эмбрионов. В тканях эмбриона, его оболочках, желточном мешке способны размножаться многие патогенные вирусы человека и животных. При этом имеет значение избирательность вирусов к той или иной ткани: вирусы группы оспы хорошо репродуцируются и накапливаются в клетках хорион-аллантоисной оболочки, вирус паротита - в амнионе, вирусы гриппа - в амнионе и аллантоисе, вирус бешенства - в желточном мешке.

Культивирование вирусов в развивающихся эмбрионах имеет ряд преимуществ перед другими методами: плотная скорлупа довольно надежно защищает внутреннее содержимое от микробов; при заражении куриных эмбрионов получают больший, чем при других методах культивирования, выход вируссодержащего материала; метод заражения куриных эмбрионов прост и доступен любым вирусологическим лабораториям; эмбрионы обладают достаточной жизнеспособностью и устойчивостью к возбудителям внешних факторов. Однако куриные эмбрионы не всегда свободны от латентных вирусных и бактериальных инфекций. Трудно наблюдать за динамикой патологических изменений, происходящих в эмбрионе после заражения его вирусом. При вскрытии зараженных эмбрионов часто не обнаруживают видимых изменений и выявляют вирус с помощью реакции гемагглю- тинации и другими методами. В зараженных эмбрионах невозможно проследить за нарастанием титра антител. Метод пригоден не для всех вирусов.

Для вирусологических исследований используют эмбрионы 7-12-дневного возраста, которые получают из птицеводческих хозяйств. Можно выращивать эмбрионы в обычном термостате, на дно которого ставят лотки с водой для увлажнения воздуха. Температура в термостате должна быть 37 °С, а влажность воздуха - 60-65%. Отбирают крупные, чистые (но немытые), оплодотворенные яйца от белых кур, хранившиеся не более 10 суток при температуре 5-10°С. Оплодотворенные яйца распознают по наличию зародышевого диска, который при просвечивании с помощью овоскопа имеет вид темного пятнышка.

При работе с вирусами могут быть использованы различные методы заражения эмбрионов, но наибольшее практическое применение получили нанесение вируса на хорион-аллантоисную оболочку, введение в аллантоисную, амниотическую полость и желточный мешок

(рис. 10.5). Выбор метода зависит от биологических свойств изучаемого вируса.

Рис. 10.5.

Перед заражением определяют жизнеспособность эмбриона на овоскопе. Живые эмбрионы подвижны, хорошо видна пульсация сосудов оболочек. При овоскопировании отмечают простым карандашом на скорлупе границы воздушного мешка или место расположения эмбриона, которое определяют по его тени на скорлупе.

Куриные эмбрионы заражают в боксе в строго асептических условиях, используя инструменты, стерилизованные кипячением.

При заражении на хорион-аллантоисную оболочку наиболее пригодны 12-дневные эмбрионы. Для заражения в аллантоисную полость используют эмбрионы 10-11-дневного возраста, в амниотическую полость - эмбрионы 7-11-дневного возраста, в желточный мешок - эмбрионы 7-дневного возраста.

Яйца с зараженными эмбрионами устанавливают на подставках тупым концом вверх. Температурный режим и срок инкубации зависят от биологических свойств инокулированного вируса. Ежедневно жизнеспособность эмбрионов контролируют под овоскопом. Эмбрионы, погибшие в первые сутки после заражения вследствие травмы, не исследуют.

Перед сбором материала эмбрионы охлаждают при 4 °С в течение 18-20 ч для сужения сосудов и предотвращения кровотечения при вскрытии. Эмбрионы вскрывают в боксе с соблюдением правил асептики.

Аллантоисную жидкость насасывают пипеткой, контролируют стерильность путем посева в сахарный или мясо-пептонный бульон, проверяют на наличие вируса в реакции гемагглютинапии и хранят при 4 °С в замороженном состоянии.

Для получения амниотической жидкости вначале отсасывают аллантоисную жидкость, затем пинцетом захватывают амниотическую оболочку, слегка приподнимают ее и пастеровской пипеткой отсасывают амниотическую жидкость.

При изучении изменений на хорион-аллантоисной оболочке ее разрезают ножницами и через отверстие выливают все содержимое в чашку Петри. Хорион-аллантоисная оболочка остается внутри скорлупы и ее извлекают пинцетом в чашку Петри с физиологическим раствором. Здесь ее промывают, расправляют и изучают на темном фоне характер очаговых поражений.

Для получения амниотической оболочки амниотический мешок, в который заключен эмбрион, разрезают и освобождают от эмбриона, просматривают на наличие поражений.

Для получения желточной оболочки разрезают хорион-аллантоис, отсасывают аллантоисную и амниотическую жидкости, извлекают пинцетом плод, отделяют его за пупочный канатик, захватывают желточный мешок и помещают в чашку Петри. Контролируют на стерильность, просматривают на наличие поражений. Желток в случае необходимости его извлечения можно отсосать шприцем без выведения наружу желточного мешка.

Наличие вируса в аллантоисной и амниотической жидкостях зараженного эмбриона определяют в реакции гемагглютинации. Жидкости эмбрионов с положительным результатом гемагглютинации после проверки на стерильность соединяют и титруют в развернутой реакции гемагглютинации.

При наличии небольшого количества вируса или невозможности выявить его в исследуемом материале проводят последовательные пассажи на куриных эмбрионах. Если после трех последующих пассажей на эмбрионах в исследуемом материале вирус не обнаруживают, результат считают отрицательным.

Использование культур клеток. Культивирование клеток вне организма требует выполнения ряда условий. Одним из них является строгое соблюдение стерильности при работе, так как используемые питательные среды служат отличным питательным субстратом также для бактерий и грибов. Клетки тканей обладают весьма высокой чувствительностью к солям тяжелых металлов. Поэтому необходимо придавать исключительное значение качеству различных ингредиентов, входящих в состав солевых растворов и питательных сред, а также способам обработки посуды и резиновых пробок, применяемых при культивировании клеток.

Одним из обязательных условий успешной работы с клетками является высокое качество дистиллированной воды (проверяется два раза в неделю). Для работы с клетками используют бидистил- лированную или деионизированную воду. Лучшими дистилляторами являются приборы из стекла или легированной стали: из такой аппаратуры не вымываются ионы тяжелых металлов, являющихся токсичными для клеток. Деонизированную воду получают на специальных установках, где очистка воды от солей осуществляется при ее последовательном прохождении через колонки с анионитом и катионитом.

При культивировании клеток особенно большие требования предъявляют к подготовке и стерилизации посуды и пробок. Во многих случаях именно неправильные их мойка и стерилизация служат причиной не прикрепления клеток к стеклу или быстрой дегенерации клеточного монослоя.

Для роста и размножения клеток вне организма необходим сложный комплекс физико-химических факторов: определенная температура, концентрация водородных ионов, неорганические соединения, углеводы, аминокислоты, белки, витамины, кислород и углекислота, поэтому для культивирования вирусов в культурах клеток используют сложные по составу питательные среды. По характеру компонентов, входящих в их состав, эти среды делят на две группы.

  • 1. Среды, представляющие собой смеси солевых растворов (Хенк- са, Эрла и др.) и естественных компонентов (сыворотка крови животных и человека, гидролизат альбумина). Количество каждого из этих компонентов в разных прописях сред различно.
  • 2. Синтетические и полусинтетические среды, состоящие из солевых растворов (Эрла, Хенкса идр.) с добавлением аминокислот, витаминов, коэнзимов и нуклеотидов (среды Игла, 199 идр.). В синтетических средах клетки могут существовать в жизнеспособном состоянии непродолжительное время (до 7 дней). Для более длительного поддержания их в жизнеспособном состоянии, а также для создания лучших условий роста и размножения клеток к синтетическим средам добавляют сыворотку крови животных (коров, телят и др.).

Для выделения вирусов могут быть использованы разные методы культивирования клеток вне организма. Однако в настоящее время наибольшее практическое применение получили однослойные культуры первично-трипсинизированных и перевиваемых линий клеток. Однослойные культуры клеток выращивают в стеклянных плоскостенных сосудах-матрацах вместимостью 1 л, 250 и 100 мл или в обычных бактериологических пробирках, обработанных соответствующим способом.

При использовании первично-трипсинизированных культур клеток сущность метода заключается в разрушении межклеточных связей в тканях протеолитическими ферментами и разобщении клеток для выращивания монослоя на поверхности стекла. Источником получения клеток могут служить ткани и органы эмбрионов человека и животных, забитых животных и птиц, а также извлеченные у человека при операции. Используют нормальные и злокачественные перерожденные ткани, эпителиальные, фибробластического типа и смешанные. Способность к размножению клеток, извлеченных из организма, тесно связана со степенью дифференциации ткани. Чем меньше дифференцирована ткань, тем более интенсивной способностью пролиферации обладают ее клетки in vitro. Поэтому клетки эмбриональных и опухолевых тканей значительно легче культивировать вне организма, чем нормальные клетки взрослых животных.

Ежедневно культуры просматривают под малым увеличением микроскопа для определения характера их роста. Если клетки не пролиферируют, выглядят округлыми, зернистыми, темными и отслаиваются от стекла, значит, посуда плохо обработана или токсичны ингредиенты питательной среды.

Наряду с первично-трипсинизированными тканями для культивирования вирусов широко используют культуры перевиваемых клеток, т.е. культуры клеток, способных к размножению вне организма неопределенно длительное время. Наиболее часто применяют культуры клеток, полученные из нормальных и раковых тканей человека. Широкую известность приобрела линия клеток HeLa, полученная из опухоли шейки матки, Нер-2 - из карциономы гортани, КВ - из ткани рака полости рта. Готовят такие культуры клеток и из нормальных тканей животных - почки обезьяны, кролика и эмбриона свиньи (табл. 10.1).

Для пересева перевиваемых клеток питательную среду отсасывают пипеткой и выливают. Сформировавшийся тонкий слой клеток разрушают раствором трипсина, и освобожденные таким образом клетки переносят в новый сосуд со свежим питательным раствором, где вновь образуется монослой клеток.

Индикатором наличия вируса в зараженных культурах клеток могут служить:

  • а) развитие специфической дегенерации клеток;
  • б) обнаружение внутриклеточных включений;
  • в) обнаружение специфического антигена методом иммунофлюоресценции;
  • г) положительная реакция гемадсорбции;
  • д) положительная реакция гемагглютинации;
  • е) образование бляшек.

Таблица 10.1

Перечень наиболее употребляемых культур перевиваемых клеток

Для выявления специфической дегенерации в зараженных культурах клетки ежедневно просматривают под малым увеличением микроскопа. Многие вирусы при размножении в клетках вызывают их дегенерацию, т.е. оказывают цитопатогенное действие (ЦПД) (рис. 10.6).

Рис. 10.6.

Время развития и характер цитопатических изменений в инфицированных культурах клеток определяются свойствами и дозой ино- кулированного вируса, а также свойствами и условиями культивирования клеток. Одни вирусы вызывают ЦПД в пределах первой недели после заражения (вирусы оспы, полиомиелита, Коксаки В и др.), другие - спустя 1-2 нед. после заражения (аденовирусы, парагриппоз- ные вирусы, ECHO и др.).

Вирусы вызывают цитопатические изменения трех основных типов: образование многоядерных гигантских клеток и симпластов, являющихся результатом слияния цитоплазмы многих клеток; круглоклеточную дегенерацию, возникающую вследствие утраты межклеточных связей и округления клеток; развитие очагов клеточной пролиферации, состоящих из нескольких слоев клеток.

При размножении некоторых вирусов в культурах клеток образуются внутриклеточные включения в цитоплазме или ядре пораженных клеток. Культуры клеток для выявления включений выращивают на стеклянных пластинках в пробирках, заражают вирусом и через определенные сроки инкубации готовят препараты, окрашивая их обычными красителями.

Для выявления специфического антигена в зараженных культурах клеток препараты готовят так же, как для выявления включений, используя МФА.

В основе метода бляшек лежит образование в монослое зараженных вирусом клеток под агаровым покрытием обесцвеченных участков, состоящих из дегенерированных (погибших) клеток. Эти участки, получившие называние бляшек, представляют собой колонии вируса, образующиеся, как правило, из одной вирусной частицы.

При отсутствии цитопатических изменений, внутриклеточных включений, бляшкообразования, отрицательных реакций гемадсорб- ции и гемагглютинации в культурах клеток, зараженных исследуемым материалом, проводят два последующих пассажа. При отсутствии указанных изменений в конечном пассаже результат выделения вируса считают отрицательным.

Для обнаружения вирусов в инфекционном материале могут быть использованы следующие методы.

Микроскопические:

  • а) вирусоскопия;
  • б) обнаружение внутриклеточных включений.

Иммунологические:

  • а) иммунная электронная микроскопия;
  • б) иммунофлюоресценция;
  • в) гемагглютинация;
  • г) гемадсорбция.

Идентификация вирусов осуществляется с помощью иммунологических методов, включающих следующие реакции:

  • а) торможения гемагглютинации;
  • б) задержки гемадсорбции;
  • в) связывания комплемента;
  • г) нейтрализации;
  • д) преципитации в геле агара.

Микроскопические методы. С помощью светового микроскопа могут быть обнаружены только крупные вирусы, размеры которых превышают 150 нм. Распознавание вирусов, имеющих меньшие размеры, возможно лишь в электронном микроскопе. Для выявления крупных вирусов может применяться световая, фазово-контрастная и люминесцентная микроскопия.

При вирусных инфекциях в зараженных клетках развиваются своеобразные включения. Одни инфекции сопровождаются образованием включений в цитоплазме пораженных клеток (бешенство, оспенная вакцина), другие - в цитоплазме и ядре (корь, натуральная и ветряная оспа, аденовирусные заболевания). Включения имеют различную природу, структуру, форму и размеры от 0,25 до 25 мкм. Согласно современным данным, при одних инфекциях включения являются местом размножения вируса и представляют собой его скопления, окруженные веществами клетки, при других - продукт дегенерации клетки.

Включения могут быть выявлены в окрашенных отпечатках органов и тканей, соскобах клеток, гистологических срезах из пораженной ткани и препаратах культур клеток, инфицированных вирусом. Окраску чаще производят по методу Романовского - Гимзы. Для окраски этим методом препараты фиксируют в смеси Дюбоска - Брази- ля - Буэна, состоящей из пикриновой кислоты, формалина, спирта, уксусной кислоты. Внутриклеточные включения при большинстве вирусных инфекций являются оксифильными и красятся по методу Романовского - Гимзы в розовый или сиреневый цвет.

Иммунологические методы диагностики вирусных инфекций. В последние годы эти методы стали ведущими в лабораторной диагностике вирусных инфекций. Это во многом объясняется экономическими причинами, поскольку классические методы вирусологического анализа довольно дороги. Кроме того длительность исследований с помощью вирусологических методов (недели), даже если они оказываются вполне эффективными, делают их ретроспективными.

Иммунологические методы используют как для обнаружения вирусных антигенов в различных биосубстратах и объектах внешней среды, так и для серодиагностики - выявления в сыворотках крови больных людей и лабораторных животных антител к вирусным антигенам. Помимо этого иммунологические методы исследования незаменимы при идентификации вирионов.

Взаимодействуя с организмом, вирусы вызывают образование антител, которые, адсорбируясь на вирионах, препятствуют проникновению вирионов в клетки и развитию цитопатического действия (ЦПД); нейтрализуют смертельное действие вирусов при репродукции их в куриных эмбрионах и организме животных; инактивируют вири- онные гемагглютинины и нейраминидазы, предотвращая реакцию ге- магглютинации (РГА) и реакцию гемадсорбции (РГадс) на пораженных вирусом клетках. Эти вируснейтрализуюшие антитела вызывают также агглютинацию и преципитацию вирусных частиц, а образующиеся при этом иммунные комплексы связывают комплемент. Поэтому для идентификации вирионов используются классическая реакция нейтрализации (PH) на культурах клеток, куриных эмбрионах и животных и ее модификации: реакция торможения гемагглютинации (РТГА); реакция торможения гемадсорбции (РТГадс). Те же реакции используются в серодиагностике вирусных инфекций для обнаружения в сыворотке больных вируснейтрализующих антител по известному вирусному антигену (диагностикуму).

Метод иммуноэлектронной микроскопии (ИЭМ). Электронная микроскопия в настоящее время играет важную роль в изучении вирусов. Именно данные электронной микроскопии служат основой современной классификации вирусов.

Новый этап в развитии электронно-микроскопического изучения вирусов - применение техники иммуноэлектронной микроскопии. С помощью этого метода стали возможными не только прямое обнаружение вирусов, но и их идентификация, а также быстрое сероти- пирование вирусных штаммов и титрование антител к ним. Большое значение ИЭМ приобрела для определения локализации вирусных антигенов внутри клеток макроорганизма.

Несомненным преимуществом ИЭМ является ее высокая чувствительность по сравнению с обычными электронно-микроскопическими методами.

При контакте антигена вируса или вирусного компонента с гомологичной антисывороткой формируется комплекс антитело - антиген. Данный феномен является основой методики, употребляемой для обнаружения и идентификации вирусных антигенов или антител к ним. Именно эти комплексы антигенов с антителами после негативного контрастирования можно наблюдать в электронном микроскопе. В клинической диагностике антигенный материал не требует тщательной очистки. Так, в случае выявления вируса гриппа можно исследовать неочищенную аллантоисную жидкость. В настоящее время считается, что практически любой вид клинического материала пригоден для ИЭМ. В диагностических целях можно применять обычную нефракционированную сыворотку, а также сыворотки реконвалес- центов. Необходимо отметить, что на конечные результаты большое влияние оказывает соотношение количеств антигена и антител. При избытке антигена наблюдают изобилие частиц; агломераты в данном случае будут немногочисленны. При избытке антител вирусные частицы окружены их толстым слоем, выявить мелкие структурные детали вириона практически невозможно; агрегаты также немногочисленны. При оптимальном соотношении количеств антигена и антител агрегаты укрупняются при хорошем изображении деталей вирионов. Из вышеизложенных соображений желательно использовать иммунную сыворотку в нескольких разведениях.

На опорную сетку наносят пленку-подложку, приготовленную из палладия. При использовании низких концентраций палладия и для улучшения адсорбционных свойств подложки ее укрепляют с помощью угля. Для этого на готовую сухую пленку-подложку на электронно-микроскопической сетке напыляют уголь в вакууме. Толщина пленки-подложки и укрепляющего слоя углерода оказывает существенное влияние на контраст и изображение мелких деталей объекта. Конкретную толщину пленок-подложек и слоя угля каждый исследователь определяет индивидуально, исходя из того, что углерод более электронно прозрачен, нежели палладий.

Вирусы и антитела к ним имеют малую электронную плотность. Поэтому биологические объекты невозможно выявлять с помощью электронного микроскопа без предварительной обработки. Для визуализации вирусов используется техника негативного контрастирования (или негативной окраски). Для негативного контрастирования вирусов и комплексов вирус - антитело применяют различные соли тяжелых металлов. Контрастирующие вещества (атомы тяжелых металлов) проникают в гидрофильные участки объектов и замещают в них воду. В результате электронная плотность объекта возрастает, становится возможным его наблюдение в электронном микроскопе.

Прямой метод ИЭМ нашел наибольшее применение в практике. Вирусную суспензию смешивают с неразведенной антисывороткой. После энергичного перемешивая смесь инкубируют в течение 1 ч при

37 °С, затем в течение ночи при 4 °С. На следующий день смесь центрифугируют для осаждения иммунных комплексов. Осадок ресуспен- дируют в капле дистиллированной воды и подвергают негативному контрастированию.

При оценке результатов ИЭМ продукты взаимодействия между антигеном и антителом в электронном микроскопе могут иметь различный вид (отдельная вирусная частица, покрытая антителами полностью или частично; агломераты вирусных частиц). Агломераты могут занимать различную площадь, иметь различный внешний вид, содержать различное количество частиц. Поэтому наряду с опытными необходимо исследовать контрольные препараты (с буферным раствором или гетерологичной антисывороткой).

Критерий оценки результатов, полученных с помощью ИЭМ, - наличие или отсутствие в препаратах скоплений вирусных частиц, агрегированных иммунной сывороткой. Наличие агломератов антигена и антител специфической антисыворотки - признак положительной реакции. Тем не менее следует учитывать возможность неспецифической агрегации частиц антигена под влиянием высокоскоростного центрифугирования. По этой причине многие авторы рекомендуют учитывать результаты по условной шкале от 0 до 4+. Она основана на оценке степени покрытия агрегированных частиц антителами сыворотки.

Методы гемагглютинации и гемадсорбции. Многие вирусы обладают способностью агглютинировать эритроциты строго определенных видов млекопитающих и птиц. Так, вирусы гриппа и эпидемического паротита агглютинируют эритроциты кур, морских свинок, человека; вирус клещевого энцефалита - эритроциты барана; вирусы японского энцефалита - эритроциты однодневных цыплят и гусей; аденовирусы - эритроциты крыс, мышей, обезьян. В качестве исследуемого материала в реакции гемагглютинации (РГА) используют аллантоисную, амниотическую жидкости, суспензию хорион-аллан- тоисных оболочек куриных эмбрионов, взвеси и экстракты из культур клеток или органов животных, зараженных вирусами. Реакцию гемагглютинации можно ставить капельным методом на стекле и в развернутом ряду в пробирках или лунках пластин из полистирола. Первый метод является ориентировочным.

Являясь группоспецифической, РГА не дает возможности определить видовую принадлежность вирусов. Их идентифицируют с помощью реакции торможения гемагглютинации (РТГА). Для ее постановки используют заведомо известные иммунные противовирусные сыворотки. К каждому их разведению добавляют равное количество вируссодержащей жидкости. Контролем является взвесь вируса.

Смесь выдерживают в термостате, затем добавляют взвесь эритроцитов. Спустя несколько минут определяют титр вируснейтрализующей сыворотки, т.е. максимальное ее разведение, вызвавшее задержку агглютинации эритроцитов.

В серологической диагностике вирусных болезней РТГА рекомендуется ставить с парными сыворотками, одну из которых получают вначале заболевания, а другую - спустя 1-2 недели и более. Четырехкратное нарастание титра антител во второй сыворотке подтверждает предполагаемый диагноз.

Реакцию гемадсорбции (РГадс) применяют для индикации в зараженных культурах клеток вируса, обладающего гемагглютинирующей активностью. Сущность реакции заключается в том, что на поверхности клеток, зараженных вирусами, адсорбируются эритроциты, чувствительные к гемагглютинирующему действию вирусов. Например, на клетках, зараженных вирусом натуральной оспы, адсорбируются эритроциты кур; вирусом кори - эритроциты обезьян; аденовирусами - обезьян и крыс и др.

Реакция нейтрализации (PH). Репродуцируясь в культурах клеток, вирусы вызывают разного рода ЦПД, выражающееся в округлении, сморщивании, уменьшении или, наоборот, увеличении размеров клеток, слиянии их и образовании симпластов, деструкции цитоплазмы и ядра. Наконец, в монослое клеток, зараженных вирусами, в результате разрушения ими отдельных участков клеточного пласта могут появляться «стерильные пятна», или бляшки, представляющие собой клон вирусной частицы, что дает возможность не только изолировать вирус, но и определить его титр.

Идентифицировать вирус по характеру бляшек очень трудно, и поэтому прибегают к постановке PH выделенного вируса заведомо известными вируснейтрализующими сыворотками. С этой целью полученный от больного вирус накапливают в культуре клеток и различные его разведения смешивают с неразведенной противовирусной сывороткой.

Смесью вирусов и сывороток можно заражать куриные эмбрионы или чувствительных животных. В таких случаях нейтрализующую активность антител чаще всего определяют по нейтрализации вирусных гемаг- глютининов в жидкостях эмбриона и устранению смертельного действия вируса на эмбрионы и животных. Одновременно вычисляют индекс нейтрализации, выражающий максимальное количество смертельных доз вируса, которое нейтрализуется данной сывороткой, по сравнению с результатами контрольного опыта, принимаемыми за единицу.

Подобным образом с помощью PH идентифицируются вирусы, выделенные из материала больных, при заражении им куриных эмбрионов и животных. Для этого к вируснейтрализующим сывороткам прибавляют вируссодержащие жидкости эмбрионов и взвеси пораженных органов животных. После определенного времени инкубации смесями инфицируют культуры клеток, куриные эмбрионы и животных.

В серодиагностике вирусных инфекций определяют динамику нарастания титра вируснейтрализующих антител по известному вирусу. При этом ставят PH с парными сыворотками, взятыми от больных в начале и в конце болезни. Диагностическим явится 4-кратное возрастание титра иммуноглобулинов во второй из них.

PH основана на способности специфических антител достаточно прочно соединяться с вирусной частицей. В результате взаимодействия между вирусом и антителом происходит нейтрализация инфекционной активности вируса вследствие блокады антигенных детерминант, ответственных за соединение вирусной частицы с чувствительными клетками. В результате вирус утрачивает способность размножаться в чувствительной к нему биологической системе in vitro или in vivo.

Результаты PH становятся очевидными после того, как смесь вируса и гомологичных ему антител после определенной по времени экспозиции будет внесена в чувствительную биологическую систему (тканевая культура клеток, куриный эмбрион, организм восприимчивого животного), где вирус может размножаться и вызывать поддающиеся учету изменения, которые будут подавлены частично или полностью в присутствии антител.

В PH участвуют три компонента:

  • 1) вирус;
  • 2) сыворотка, содержащая антитела;
  • 3) биологический объект (лабораторные животные, развивающиеся куриные эмбрионы, тканевые культуры), выбор которого зависит от вида вируса, с которым предполагается проводить исследования.

PH используют либо для идентификации выделенного возбудителя, либо для обнаружения и титрования антител в сыворотках. В первом случае пользуются сыворотками специально иммунизированных лабораторных животных или переболевших людей. Во втором случае используют сыворотки, взятые в начальной стадии болезни и в период реконвалесценции.

Вируснейтрализующие антитела в сыворотках переболевших людей в отличие от антигемагглютининов или комплементсвязывающих антител сохраняются многие годы, а при некоторых вирусных инфекциях (например, при кори) даже пожизненно. Это позволяет в ряде случаев использовать пул сывороток многих реконвалесцентов в качестве референс-препарата, который после разлива в ампулы и лиофилизации пригоден для диагностической работы в течение длительного времени.

При идентификации выделенных возбудителей пользуются заранее приготовленными гипериммунными сыворотками различных животных: кроликов, белых крыс и мышей, морских свинок, обезьян, баранов, лошадей и т.д. Активность гипериммунных сывороток для PH зависит от способа иммунизации животных.

Перед постановкой каждого нейтрализационного опыта вирус предварительно титруют, определяя конечное разведение, вызывающее повреждение культуры ткани либо инфицирование лабораторных животных (или куриных эмбрионов). Титр вируса выражают в 50%-ной дозе (ТКИД50 - 50%-ная инфекционная доза для тканевой культуры).

Молекулярно-генетические методы диагностики в вирусологической практике. Методы молекулярной биологии получили свое развитие еще в 50-е гг. XX столетия. Они стали возможными в связи с тем, что в геноме каждого вируса имеются уникальные видоспецифичные нуклеотидные последовательности, обнаружив которые можно идентифицировать любой инфекционный агент. Наибольшее значение данные методы имеют при выявлении микроорганизмов, которые длительно или трудно культивируются обычными методами. В 1970-е годы для выявления инфекционного возбудителя или мутации использовали ДНК-зондовую детекцию, основанную на гибридизации специфических олигонуклеотидных зондов, меченных радиоактивным изотопом (или флюорохромом) с образцом выделенной ДНК. Ги- бридизационный анализ использует способность нуклеиновых кислот в определенных условиях образовывать специфические комплексы с нуклеиновыми же кислотами, имеющими комплементарные к ним последовательности. Метод детекции инфекционных возбудителей ДНК-гибридизацией оказался крайне трудоемким, длительным и дорогостоящим. Кроме того его чувствительность оказывается недостаточной при идентификации микроорганизмов в таких клинических материалах, как фекалии и моча.

На смену ДНК-гибридизации пришел метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и многократно копировать с помощью термофильной ДНК-полимеразы определенный фрагмент ДНК. Полимеразная цепная реакция (ПЦР) - это изящный метод, имитирующий естественную репликацию ДНК и позволяющий обнаружить и многократно копировать с помощью термофильной ДНК-полимеразы определенный фрагмент ДНК.

Благодаря своим высоким диагностическим качествам ПЦР является общепризнанным дополнением к традиционным методам, использующимся в вирусологии: размножению вируса в культуре клеток, иммунологическому выявлению вирусных антигенов, электронной микроскопии. Существенным преимуществом данного метода является возможность выявлять вирусы при латентных инфекциях (цитомегало- вирус, вирус герпеса) и вирусы, которые трудно или пока невозможно культивировать (вирус иммунодефицита человека, вирус Эпстайна - Барр, вирус папилломы человека, вирус гепатита Видр.). С методом ПЦР связываются перспективы изучения таких заболеваний, как болезнь Крейтцфельдта - Якоба, Альцгеймера, рассеянный склероз.