Филогенез дыхательной системы. Филогенез мочеполовой системы

Дыхательная система всех хордовых и топографически, и по происхождению связана с кишечником. У водных хордовых функцию дыхания выполняют жаберные щели, прони­зывающие передний отдел кишечной трубки (глотка). У представителей наземных хордовых жаберные щели закладываются во время эмбриональ­ного развития, а затем исчезают. Функцию дыхания у них выполняют легкие, образующиеся из выпячивания кишечной стенки.

Эволюция жаберного аппарата у хордовых выражалась в уменьшении числа жаберных щелей при одновременном увеличении дыхательной поверх­ности путем образования жаберных лепестков. Эволюция легких выражается в обособлении более или менее сложных дыхательных путей и увеличении дыхательной поверхности путем образования легких губчатого строения со сложной системой разветвлений внутрилегочных бронхов, заканчивающихся пузырьками с ячеистыми стенками.

Наиболее примитивна дыхательная система у ланцетника (подтип бесче­репных). Передний отдел кишечника - стенка глотки - прободен жаберными шелями (до 150 пар), которые открываются в атриальную (околожаберную) полость. У круглоротых (подтип позвоночных) органами дыхания являются жаберные мешки (5-15 пар), сообщающиеся с передним отделом кишечника и открывающиеся наружу самостоятельными отверстиями.

У рыб имеется 4-7 (чаще всего 5) жаберных мешков в виде щелевидных пространств между жаберными дужками. В них находятся многочисленные жаберные лепестки, пронизанные капиллярами. Тычинки, расположенные на вогнутой поверхности жаберных дужек, препятствуют попаданию пищи из глотки в жабры. Помимо этого, у некоторых рыб имеются добавочные органы дыхания, позволяющие им использовать кислород воздуха. Особый интерес представляет использование плавательного пузыря для воздушного дыхания и образования легких. Стенки плавательного пузыря богаты крове­носными сосудами, поэтому у некоторых зарывающихся в ил рыб он может служить для газообмена. Несмотря на это, плавательный пузырь большин­ства рыб не гомологичен легким, так как они развиваются из брюшной части жаберного мешка, а плавательный пузырь - из спинной его части. Только у кнсгеперых рыб плавательный пузырь образуется как выпячивание вент­ральной части кишечника и служит гомологом легких наземных животных. У двоякодышащих рыб легкие есть, а плавательный пузырь отсутствует. В связи с развитием легочного дыхания, помимо наружных, у них имеются внутренние ноздри (хоаны), при помощи которых обонятельные полости сообщаются с полостью передней части кишечной трубки.

У личинок амфибий, как и некоторых рыб, органы дыхания представ­лены древовидно ветвящимися наружными жабрами. Очевидно, они раз­вились из жаберных лепестков верхних концов жаберных дуг в результате их перемещения наружу. У большинства взрослых амфибий появляются легкие в виде тонкостенных ячеистых мешков. Они закладываются еще у личинок в виде парных выростов брюшной стенки глотки кзади от послед­него жаберного мешка. У амфибий функцию дыхания, кроме легких, выпол­няет также кожа с большим количеством кровеносных капилляров и сли­зистых желез. Дифференцировка дыхательных путей выражается в появле­нии хоан и трахеи (бронхов еще нет), а также черпаловидных хрящей и натянутых на них голосовых связок (только у самцов). Усиление звуков достигается голосовыми мешками, образованными слизистой оболочкой ротовой полости. Скелет гортани гомологичен брюшному отделу пятой жабер­ной дуги.



У рептилий легкие усложняются. Развиваются многочисленные ячеис­тые перекладины, резко увеличивающие дыхательную поверхность легких. В дыхательных путях тоже наблюдается прогресс, появляются разветвлен­ные бронхи.

Легкие птиц представляют собой губчатые тела, пронизанные разветв­лениями бронхов, а не мешки, как у рептилий.

У млекопитающих идет дальнейшее усложнение бронхиального дерева, появляются бронхи второго, третьего и четвертого порядка, бронхиолы и альвеолы. Грудная полость отделяется от брюшной при помощи диафрагмы, которая играет важнейшую роль в акте дыхания.

Интересно появление гортанных хрящей (щитовидных), образующихся за счет второй и третьей жаберных дуг.

Филогенез пищеварительной системы. Органы пищеварения беспозвоночных. Впервые пищеварительная система начинает формироваться у кишечнополостных. В процессе гаструляции за счет впячивания энтодермы образуется первичная кишка (гастральная полость). Она сообщается с внешней средой только одним отверстием - ротовым, которое одновременно служит для выбрасы­вания непереваренных остатков пищи. Заднепроходного отверстия нет. Большинство типов животного мира, как и кишечнополостные, относятся к первичноротым, так как рот, образовавшийся в эмбриоге­незе, функционирует всю жизнь. Иглокожие, погонофоры и хордовые составляют группу вторичноротых (см. рис. 127). У них ротовое отверстие сначала образуется на одном конце зародыша, а затем на противоположном конце происходит впячивание эктодермы, и образу­ется второе ротовое отверстие (вторичный рот). Первичный рот зарастает, а на его месте позднее формируется анальное отверстие.

У кишечнополостных внутриклеточное пищеварение начинает за­мещаться внутриполостным. Пища первоначально подвергается воз­действию ферментов и измельчается в полости, а затем захватывается клетками энтодермы, где переваривается в пищеварительных вакуолях. У плоских червей (трематод) пищеварительная трубка также заканчива­ется слепо и состоит из двух отделов - переднего эктодермального, представленного хорошо развитой глоткой, и среднего (кишечник), развивающегося из энтодермы. Пищеварение внутриполостное и внут­риклеточное. У круглых червей появляется третий отдел пищевари­тельного тракта - задний. Он образуется путем впячивания эктодермы на заднем конце тела, соединяется с полостью средней кишки и заканчивается на заднем конце тела анальным отверстием. С появлени­ем задней кишки пиша продвигается только в одном направлении, что обеспечивает более полное ее усвоение. Пищеварение становится только внутриполостным. Передний и задний отдел кишки, имеющие эктодермальное происхождение, выстланы кутикулой. У кольчатых червей в стенке кишки появляются мышечные элементы, обеспечиваю­щие перистальтику, и развивается сеть кровеносных сосудов. У чле­нистоногих происходит дальнейшая дифференцировка кишечной труб­ки и одновременно появляются приспособления для измельчения пищи (челюсти) и железы, секретирующие пищеварительные ферменты.



Пищеварительный тракт рыб начинается ротовой полостью, крыша которой образована непосредственно основанием черепа (первичное небо).

По краю челюстей, а у некоторых на всей поверхности ротовой по­лости расположены зубы. Зубная система у рыб гомодонтная, т. е. зубы одинаковы по строению и функции. Обычно они имеют коническую форму, обращены назад и служат лишь для удержания пищи. По своему происхождению и развитию зубы гомологичны плакоидной чешуе хрящевых рыб. Смена зубов происхо­дит в течение всей жизни. В ротовой полости рыб расположен примитивный язык в виде двойной складки слизистой оболочки. Железы отсутствуют.

По сравнению с низшими хордовыми пищеварительный тракт рыб значительно дифференцирован, особенно у хрящевых. Ротовая полость переходит в глотку, стенки которой пронизаны жаберными щелями. За ней следует короткий пищевод, затем желудок, степень обособленности которого различна. В кишечнике выделяют тонкий отдел и толстый, заканчивающийся анусом. Длина кишечника увеличивается, он образует петли. В петле тонкой кишки лежит поджелудочная железа. Печень азвита хорошо, имеется желчный пузырь. У костистых рыб кишечник менее дифференцирован.

У амфибий ротовая полость не отделяется от глотки. Зубная система гомодонтная. Появляются слюнные железы. Их секрет служит для смачивания пищи, не оказывая на нее химического воздействия. В рото-глоточную полость открываются хоаны, евстахие­вы трубы и гортанная щель. Полость продолжается в пищевод, переходящий в желудок. Собственно кишечник имеет большую длину по сравнению с рыбами и отчетливо подразделяется на тонкий отдел и толстый, открывающий в клоаку. Печень имеет больший объем, разветвленная поджелудочная железа лежит в петле тонкого ки­шечника.

Ротовая полость рептилий более обособлена от глотки, у большинства гомодонтная зубная система. Однако у некоторых, в основном вымерших форм, обнаруживается начальная дифференци-ровка зубов. Язык имеет иное происхождение, чем язык анамний. Он развивается из зачатка, лежащего в области 2-й и 3-й жаберных дуг. Форма и степень подвижности языка у разных видов рептилий различна. Ротовые железы развиты лучше. Среди них выделяют подъязычные, зубные и губные. У ядовитых змeй задняя пара зубных желез преобразуется в ядовитую железу. Из яда змей выделен ряд биологически активных веществ, например, фактор роста нервов. Названный фактор, а также другие вещества, которые могут быть отнесены по физиологическому действию к гормонам, обнаруже­ны в гомологах ядовитых желез - слюнных железах млекопитающих. У рептилий появляются зачатки вторичного неба. Оно образуется боковыми складками верхней челюсти, которые доходят до середины и делят ротовую полость на верхний отдел - дыхательный и нижний -вторичную ротовую полость.

Строение глотки, пищевода и желудка не имеет существенных отли­чий по сравнению с амфибиями. Собственно кишечник подразделяется на тонкую и толстую кишки. На границе тонкого и толстого отдела появляется небольшой слепой вырост. Длина кишечника по сравнению с амфибиями увеличивается. Задняя кишка оканчивается клоакой.

Пищеварительный тракт млекопитающих достигает наибольшей степени дифференцировки. Он начинается предротовой полостью или преддверьем рта, расположенным между губами, щеками и челюстями.

Мясистые губы, свойственные только млекопитающим, служат для захвата пищи. Ротовая полость ограничена сверху твердым небом. Кзади твердое небо продолжается в мягкое небо - двойную складку слизистой, отделяющую ротовую полость от глотки. На твердом небе имеются поперечные валики, которые способствуют перетиранию пищи. У человека при рождении также имеются такие валики, впоследствии исчезающие.

Зубы млекопитающих неодинаковы по строению и функции - гетородонтная зубная система. Различают резцы, клыки, малые коренные (ложнокоренные) и большие коренные (истинные коренные). Соотношение зубов различного типа составляет зубную формулу. Резцы - передние зубы - имеют долотовидную форму и служат для захвата и разрезания пищи. Следующие - клыки - сохранили коническую форму, но имеют большие размеры и используются для разрывания пищи. Задние зубы приобрели сложную бугристую или складчатую поверхность и служат для перетирания пищи. Они подразделяются на малые жевательные - (премоляры) и большие жевательные (моляры).

Ротовые железы у млекопитающих достигают наивысшего развития. Имеются как мелкие слизистые железы, так и крупные слюнные - подъязычная, заднеязычная, подчелюстная и околоушная. У высших млекопитающих в ротовой полости появляются крупные скопления лимфатической ткани - миндалины. В глотку открываются носоглоточные ходы, евстахиевы трубы, гортанная щель. Желудок млекопитающих хорошо обособлен от других отделов и у разных видов имеет свои специфические отличия. Общим служит разнообразие желез слизистой оболочки, участвующих в образовании желудочного сока. Собственно кишечник дифференцируется на отделы - двенадцатипер­стная, тонкая, толстая, слепая и прямая кишки. Слепая кишка имеет вид непарного слепого выроста, расположенного на границе толстрй и тонкой кишки, достигающего у некоторых животных (травоядные, грызуны) больших размеров - от 10 до 27% всей длины кишечника. У многих видов на слепой кишке имеется вырост - червеобразный отросток, в стенке которого содержится большое количество лимфо-идной ткани. Длина кишечника по сравнению с рептилиями резко увеличена.

Филогенез дыхательной системы. У низших беспозвоночных специальные органы дыхания отсутству­ют, газообмен происходит через покровы - диффузное дыхание (кишечнополостные, плоские, круглые черви). У кольчатых червей кожа богато снабжена кровеносными капиллярами, в которые поступает кислород. Диффузное дыхание встречается также у мелких членистоно­гих, имеющих тонкий хитин и относительно большую поверхность тела. Энергетический обмен таких животных отличается малой интен­сивностью. У многих беспозвоночных появляются приспособления, увеличивающие дыхательную поверхность в виде местных специализи­рованных органов дыхания. У водных форм органы дыхания пред­ставлены жабрами, у наземных - легкими и трахеями. Впервые жабры появляются у многощетинковых кольчецов и представляют собой разрастания эпителия, пронизанные кровеносными сосудами. Многие виды одновременно сохраняют диффузное дыхание. У наземных (паукообразные) появляются листовидные легкие, у насекомых - трахеи.

Функцию органов дыхания у низших хордовых (ланцетник) принимает на себя передняя часть кишечной трубки. В стенках глотки имеется 100-150 пар отверстий, или жаберных щелей. Органами дыхания служат межжаберные перегородки, в которых проходят кровеносные сосуды - жаберные артерии. Вода, проходя через жаберные щели, омывает названные перегородки и кислород диффун­дирует через стенки артерий. Поскольку жаберные артерии ланцетника не разветвляются на капилляры, общая поверхность, через которую поступает кислород, невелика, окислительные процессы идут на низком уровне. Соответственно этому ланцетник ведет малоподвижный, пассивный образ жизни.

Прогрессивные изменения органов дыхания у р ы б заключаются в появлении на межжаберных перегородках многочисленных эпители­альных выростов - жаберных лепестков. Жаберные лепестки, распо­ложенные на одной перегородке, составляют жабру. Жаберные артерии рыб в отличие от ланцетника образуют в жаберных лепестках густую сеть капилляров. Дыхательная поверхность за счет лепестков резко увеличивается, поэтому число жаберных перегородок у рыб сокраща­ется до четырех. Изменения дыхательной системы сочетаются у рыб с прогрессивными изменениями органов кровообращения, о чем будет сказано ниже.

Жаберные щели у рыб возникают путем выпячивания стенки глотки. Сначала образуются парные слепые выросты - жаберные мешки, растущие по направлению к периферии. Навстречу каждому из них образуется впячивание кожных покровов. Выросты глотки и выросты кожи растут друг другу навстречу. На месте их соединения ткань прорывается и образуется щель, соединяющая полость глотки с наружной средой, т. е. жаберная щель. Позднее на перегородках образуются жаберные лепестки. У большинства рыб закладываются пять пар жаберных мешков. У кистеперых рыб появляются наряду с жабрами органы для использования атмосферного кислорода. Таким дополнительным органом дыхания у них служит плавательный пузырь, представляющий собой парный мешковидный вырост брюшной стороны глотки, стенки которого богаты кровеносными сосудами. Пузырь соединен с глоткой короткой широкой камерой. Кровоснабже­ние происходит за счет 4-й жаберной артерии, окисленная кровь поступает прямо в сердце.

Земноводные обладают способностью, хотя и ограни­ченной, жить в наземных условиях, что обусловило дальнейшее развитие органов атмосферного дыхания в виде легких и кожи. Легкие земноводных гомологичны плавательному пузырю кистеперых рыб. Они представляют собой два мешка, соединенных с глоткой небольшой гортанно-трахейной камерой. Так же, как плавательный пузырь кистеперых рыб, они снабжаются кровью от 4-й жаберной артерии. Легкие амфибий весьма примитивны. Как правило, стенки легочных мешков гладкие, с небольшими перегородками, дыхательная площадь мала. Поверхность легких относится к поверхности тела, как 2 к 3. Количество кислорода, поступающего через легкие, составляет при­мерно лишь 30-40% от его общего количества. Воздухоносные пути слабо дифференцированы. В связи с недостаточным развитием легких основным органом дыхания служит кожа, в которой имеется большое количество мелких кровеносных сосудов-капилляров.

Урептилий с переходом к жизни на суше происходит дальнейшее развитие дыхательной системы. Кожа рептилий выключа­ется из дыхания, поскольку толстая роговая чешуя, защищающая рептилий от высыхания, препятствует газообмену, и легкие становятся основным органом дыхания. Дыхательная поверхность легочных мешков резко увеличивается благодаря появлению на их стенках большого количества разветвленных перегородок, в которых проходят кровеносные сосуды.

Одновременно у рептилий наблюдаются прогрессивные изменения в воздухоносных путях. В трахее формируются хрящевые кольца, разделяясь, она дает два бронха. Начинается формирование внутриле-гочных бронхов. Отдельные крупные перегородки вдаются глубоко в полость легкого, оставляя свободным лишь узкий центральный вход. Дистальные края перегородок покрыты мерцательным эпителием, а в наиболее крупных из них появляются хрящи. В результате образуются стенки внутрилегочных бронхов.

Млекопитающие обладают легкими наиболее сложного строения. Характерен древовидный тип разветвления бронхов. Основ­ной бронх делится на довольно большое количество вторичных бронхов, те в свою очередь распадаются на еще более мелкие бронхи 3-го порядка, а последние дают многочисленные мелкие бронхи 4-го порядка и т. д., и, наконец, идут тонкостенные трубочки - бронхио­лы. На концах бронхиол находятся мелкие пузырьки, выстланные эпителием, или альвеолы. Стенки каждой альвеолы оплетены густой сетью капилляров, где и происходит газообмен. Количество альвеол достигает огромного числа, благодаря чему дыхательная поверхность резко возрастает. У ряда млекопитающих поверхность легких в 50-100 раз больше поверхности тела. У человека площадь легких составляет 90 м 2 и превышает поверхность тела во много раз, ветвления бронхов составляют 23 порядка.

Таким образом, основное направление эволюции дыхательной системы заключается в увеличении дыхательной поверхности, обо­соблении воздухоносных путей.

Для хордовых характерна филогенетическая, эмбриональная и функциональная связь пищеварительной и дыхательной систем. Дыхательная система развивается на базе пищеварительной, у низших хордовых функционирует совместно с ней, у взрослых наземных позвоночных системы перекрещиваются в области глотки. Обе системы закладываются у эмбрионов под хордой в виде прямой трубки, которая в дальнейшем делится на три части, передняя из которых называется stomodeum.

У рыб и земноводных крышей ротовой полости служит основание мозгового черепа. У рептилий и млекопитающих объем ротовой полости увеличивается за счет складок верхнечелюстных и небных костей. У млекопитающих обе складки срастаются, образуя вторичное твердое небо, которое разделяет ротовую и носовую полости. Если это срастание нарушается у человека, формируется порок развития - «волчья пасть ». Этот порок имеет генетические механизмы возникновения и может наследоваться.

Зубы по происхождению связаны с плакоидной чешуей рыб, у которых они располагаются в несколько рядов. У рептилий уже имеется один ряд зубов, но они все одинаковые - гомодонтная зубная система . Такие зубы могут многократно сменяться в течение жизни. У млекопитающих зубы дифференцированы и выполняют различные функции - гетеродонтная зубная система . У человека имеются резцы, клыки, премоляры и моляры. Зубы расположены в ячейках альвеолярных дуг, общее их число прогрессивно уменьшилось до 32, имеется лишь однократная смена зубов. Гомодонтные зубы являются редкой аномалией у человека, но часто происходит закладка сверхкомплектных зубов , которые обычно уменьшены в размерах. На дне рта имеется язык, у рыб он лишен мышц. У наземных позвоночных язык подвижен и закладывается из трех зачатков. Если парные зачатки не срастаются, возникает редкая аномалия у человека - раздвоенный язык .

Глотка выполняет дыхательную и пищеварительную функции. У рыб 5-7 жаберных щелей. Навстречу выростам глотки жаберным мешком выпячиваются кожные жаберные карманы. Между ними расположены щели. Они закладываются и у наземных хордовых, но щели прорываются только у личинок амфибий, у пресмыкающихся и млекопитающих щели прорываются только при нарушении развития. У человека при этом формируются аномалии - латеральные свищи и кисты шеи , которые часто малигнизируются. Первая жаберная щель у наземных хордовых превращается в евстахиеву трубу, барабанную полость и наружный слуховой проход.

Кишечная трубка в филогенезе удлиняется, дифференцируется на отделы, увеличивается количество одноклеточных желез, образуются крупные многоклеточные железы. У ланцетника длина кишечной трубки составляет 1/3 длины тела, у человека она в 10 раз длиннее тела. У рептилий впервые появляется слепая кишка, в которой поселяются симбиотические бактерии и простейшие. Это позволяет значительно расширить рацион питания.

У человека встречаются такие пороки, как укорочение и недоразвитие любых отделов кишечника и пищеварительных желез. Тяжелые аплазии несовместимы с жизнью. Нередко встречаются свищи между трахеей и пищеводом , а при персистировании клоаки прямая кишка и мочеполовые пути объединены . При замедлении миграции зачатков поджелудочной железы из пищеварительной трубки наблюдается гетеротопия поджелудочной железы в тонкий кишечник и желудок.

ФИЛОГЕНЕЗ ОРГАНОВ ДЫХАНИЯ

Жабры - наиболее ранние органы дыхания. Среди наземных позвоночных они функционируют лишь у личинок земноводных.Эволюция шла по пути увеличения дыхательной поверхности жабр. У ланцетников имеются только жаберные щели, у круглоротых формируются жаберные мешки, у рыб на стенках щелей появляются пронизанные капиллярами жаберные лепестки.

Позади жаберных дуг у кистеперых рыб формируется парный плавательный пузырь. Он выполняет гидростатическую функцию, но в нем также происходит газообмен между кровью и воздухом, который может беспрепятственно проходить в пузырь из глотки. Кистеперые рыбы вышли на сушу, от них произошли первые амфибии - стегоцефалы, а из плавательного пузыря - первые крупноячеистые легкие, поэтому газообмен у амфибий в немалой степени осуществляется также и через кожу. В дальнейшем из материала жаберных дуг формируются дыхательные пути - гортань, трахея, бронхи, которые постепенно удлиняются, в них происходит очистка, согревание и увлажнение воздуха. Легкие у рептилий становятся мелкоячеистыми, появляются межреберные мышцы. У человека альвеолярная поверхность легких достигает 90 м 2 , а диафрагма приобретает мышечные волокна и становится основной дыхательной мышцей.

Т.о., эволюция вновь шла по пути увеличения дыхательной поверхности: крупноячеистые дыхательные мешки у земноводных, легкие с большим количеством внутренних перегородок у рептилий, губчатые легкие у птиц, мелкоальвеолярные легкие у млекопитающих с преддвериями, альвеолярными ходами, альвеолами. Также удлинились и дифференцировались дыхательные пути, совершенствовалась дыхательная мускулатура.

Среди аномалий встречается эзофаготрахеальные и бронхолегочные свищи , а также кистозная гипоплазия легких , при которой бронх связан с кистой, имеющей очень малую дыхательную поверхность. Могут быть недоразвитие или полная аплазия диафрагмы , которая несовместима с жизнью.

ФИЛОГЕНЕЗ СИСТЕМЫ КРОВООБРАЩЕНИЯ

Для крупных высокоорганизованных организмов необходимо эффективное и быстрое перемещение жидкой внутренней среды. Это обеспечивается системой кровообращения. У хордовых она замкнутая.

У ланцетника основные сосуды - брюшная и спинная аорты. По брюшной венозная кровь движется к органам дыхания, по спинной - артериальная кровь к органам. Часть брюшной аорты периодически сокращается, проталкивая кровь по сосудам. В брюшную аорту с левой и с правой стороны впадают парные кювьеровы протоки. Венозная кровь от желудочно-кишечного тракта оттекает по воротной вене к печени, из которой выходит печеночная вена, впадающая в брюшную аорту. В дальнейшем правый кювьеров проток преобразуется в верхнюю полую вену, а левый - в коронарный синус сердца.

У рыб рядом с жаберным аппаратом формируется двухкамерное сердце, но сохраняется один круг кровообращения, как у ланцетника. Сердце амфибий расположено каудальнее, рядом с легкими, оно трехкамерное - два предсердия и желудочек, из которого выходит артериальный конус. Он делится на три пары сосудов: кожно-легочные артерии, дуги аорты, сонные артерии, они несут соответственно венозную, смешанную и почти артериальную кровь. Такое разделение объясняется особым строением желудочка и спирального клапана в конусе. У рептилий в сердце возникает неполная межжелудочковая перегородка, а от сердца отходит не один, а три непарных сосуда: из левой части желудочка - правая дуга аорты с артериальной кровью, из правой - легочная артерия с венозной кровью, из середины - левая дуга аорты со смешанной кровью.

У млекопитающих происходит полное разделение венозного и артериального кровотоков, сердце становится четырехкамерным, правая дуга аорты редуцируется, остается левая, несущая артериальную кровь.

Сердце у человека закладывается в области шеи, затем перемещается с переднее средостение. Редкие пороки, несовместимые с жизнью - шейное положение сердца и двухкамерное сердце . Гораздо чаще встречаются дефекты межпредсердной и межжелудочковой перегородок , вплоть до трехкамерного сердца .

У человека, как у большинства амниот, закладывается шесть пар жаберных артериальных дуг, они никогда не функционируют одновременно. Сохраняются левые части IV и IV дуги - аорта и легочная артерия. Очень редко сохраняется правая половина IV дуги, это клинически не проявляется. Если сохраняются обе части IV дуги , они срастаются позади пищевода, сдавливая трахею, что проявляется нарушением глотания и удушьем. Самым частым пороком является сохранение боталлова протока между спинной аортой и легочной артерией. Через проток артериальная кровь сбрасывается в венозный малый круг. Такой проток имеется у взрослых хвостатых амфибий, у более развитых позвоночных он облитерируется. Редким пороком является отхождение от сердца единственного артериального ствола (первичного эмбрионального), порок летален. Существует множество других аномалий артериальных и венозных сосудов.

ФИЛОГЕНЕЗ МОЧЕПОЛОВОЙ СИСТЕМЫ

Выделительная и половая системы выполняют функции выделения продуктов обмена и размножения соответственно, и имеют единую закладку - нефротом, который формируется в области ножки сомита и тесно связан с вторичной полостью тела - целомом. Органом выделения являются почки, которые в филогенезе проходят три этапа: пронефрос (головная, предпочка), мезонефрос (туловищная), метанефрос (тазовая). Предпочка существует только у личинок рыб и амфибий, туловищная почка - у взрослых рыб и амфибий, у рептилий и млекопитающих - тазовая почка.

При развитии предпочки от головного конца тела к клоаке тянется пронефритический канал, который впоследствии расщепляется на два - вольфов , который вступает с соединение с нефронами, и мюллеров , который образует яйцевод, а передним концом открывается в целом. У рептилий и млекопитающих из каудальной части вольфова канала образуются почка и мочеточник, а у самцов также семенные протоки. Мюллеров канал у самцов редуцируется, а у самок из него формируется матка с придатками и влагалище. У яйцекладущих и сумчатых имеется по два влагалища, матки и яйцевода, у остальных эти образования срастаются в одно (кроме яйцеводов).

Почки состоят из нефронов, которые фильтруют жидкость внутренней среды, поэтому связаны с кровеносной системой. Пронефрос и мезонефрос, который имеет нефроны с капсулой и сосудистым клубочком, сохраняют связь с целомом, а метанефрос - полностью эту связь утрачивает. Для экономии жидкости выделительные канальцы в процессе эволюции удлиняются, формируется также петля Генле, что обеспечивает эффективное обратное всасывание не только воды, но и солей, глюкозы, гормонов. Метанефрос рептилий сохраняет сегментарное строение, у млекопитающих оно утрачено, почки перемещаются вниз - в забрюшинное пространство поясничной области. У анамний первоначально закладываются только две почки - первичная и туловищная, последняя остается функционировать, у амниот - три почки, при этом у взрослых особей функционируют тазовые.

Нередкими аномалиями являются сегментирование или удвоение почки и мочевыводящих путей, а также опущение почки - нефроптоз или ее тазовое положение .

Половые органы закладываются в виде парных складок. Первоначально яичники имеют фолликулярное строение, семенники - трубчатое. Иногда развивается гермафродитизм , он нередко встречается у круглоротых и рыб, у человека - крайне редко (ovotestis). У большинства млекопитающих мужские гонады из брюшной полости через паховый канал перемещаются в мошонку. При нарушении такого перемещения возникает крипторхизм - неопущение яичек.

У человека нередко встречается аномалия - двурогая матка , а также удвоенная матка. Закладка полового члена также парная, в дальнейшем зачатки срастаются. Редкая аномалия - полное удвоение полового члена .

ФИЛОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

У большинства многоклеточных животных существует две интегрирующие системы - нервная и эндокринная. Последняя филогенетически более древняя, она осуществляет медленные приспособительные реакции. У позвоночных большое значение приобрела нервная системы, которая обеспечивает быстрое реагирование внутри организма и при взаимодействии с внешней средой.

Нервная система хордовых формируется из эктодермы, закладывается сначала в виде пластинки. Затем преобразуется в трубку над хордой с полостью внутри - невроцелем. передний конец трубки расширен. Здесь формируется головной мозг, который у взрослых позвоночных состоит из 5 отделов - переднего, промежуточного, среднего, заднего и продолговатого. У рыб и амфибий самым большим и интегрирующим отделом является средний мозг, связанный с центрами зрения - ихтиопсидный тип мозга . У рептилий увеличивается передний отдел, в котором особенно развиты полосатые тела, которые являются высшим интегрирующим центром. На поверхности крыши формируются зачатки древней коры - arhicortex, или arhipallium. Это зауропсидный тип мозга . У млекопитающих появляется новая кора - neocortex, или neopallium, со сложным строением, у высших приматов она формирует множество извилин. Это маммалийный тип мозга . Между полушариями имеется комиссура. Промежуточный мозг включает гипоталамус, гипофиз, эпифиз и управляет вегетативными функциями. В среднем мозге располагаются подкорковые центры зрения и слуха. Хорошо развит мозжечок, который имеет свою кору, и осуществляет распределение тонуса мышц и координацию движений.

В процессе развития из переднего утолщения формируется вначале три мозговых пузыря - передний, средний и задний. Передний подразделяется на два - telencephalon (1) - передний и diencephalon (2) - промежуточный. Из среднего формируется средний мозг - mesencephalon (3). Из заднего - metencephalon (4) - задний мозг и medulla oblongata (5) - продолговатый. Это стадия пяти мозговых пузырей. У человека уже на ранних стадиях опережающими темпами начинает развиваться передний мозг.

Нервная система столь важна, что многие пороки ее развития несовместимы с жизнью. Среди них рахисхиз - незамыкание нервной трубки и прозенцефалия - недоразвитие полушарий и коры. При агирии (отсутствие извилин), а также олигогирии и пахигирии (уменьшение числа и утолщение извилин) развивается грубая олигофрения с нарушением многих рефлексов. Такие дети обычно умирают в течение первого года жизни.

У низших беспозвоночных специальные органы дыхания отсутству­ют, газообмен происходит через покровы - диффузное дыхание. Энергетический обмен таких животных отличается малой интен­сивностью. У многих беспозвоночных появляются приспособления, увеличивающие дыхательную поверхность в виде местных специализи­рованных органов дыхания. У водных форм органы дыхания пред­ставлены жабрами, у наземных - легкими и трахеями.. Многие виды одновременно сохраняют диффузное дыхание.

Функцию органов дыхания у низших хордовых (ланцетник ) принимает на себя передняя часть кишечной трубки. В стенках глотки имеется 100-150 пар отверстий, или жаберных щелей. Органами дыхания служат межжаберные перегородки, в которых проходят кровеносные сосуды - жаберные артерии. Вода, проходя через жаберные щели, омывает названные перегородки и кислород диффун­дирует через стенки артерий. Поскольку жаберные артерии ланцетника не разветвляются на капилляры, общая поверхность, через которую поступает кислород, невелика, окислительные процессы идут на низком уровне. Соответственно этому ланцетник ведет малоподвижный, пассивный образ жизни.

Прогрессивные изменения органов дыхания у р ы б заключаются в появлении на межжаберных перегородках многочисленных эпители­альных выростов - жаберных лепестков. Жаберные артерии рыб в отличие от ланцетника образуют в жаберных лепестках густую сеть капилляров. Жаберные щели у рыб возникают путем выпячивания стенки глотки. У кистеперых рыб появляются наряду с жабрами, органы для использования атмосферного кислорода. Таким дополнительным органом дыхания у них служит плавательный пузырь, представляющий собой парный мешковидный вырост брюшной стороны глотки, стенки которого богаты кровеносными сосудами. Пузырь соединен с глоткой короткой широкой камерой.

Земноводные обладают способностью жить в наземных условиях, что обусловило дальнейшее развитие органов атмосферного дыхания в виде легких и кожи. Легкие земноводных гомологичны плавательному пузырю кистеперых рыб. Они представляют собой два мешка, соединенных с глоткой небольшой гортанно-трахейной камерой.. Как правило, стенки легочных мешков гладкие, с небольшими перегородками, дыхательная площадь мала. \. Воздухоносные пути слабо дифференцированы. В связи с недостаточным развитием легких основным органом дыхания служит кожа, в которой имеется большое количество мелких кровеносных сосудов-капилляров.

Кожа рептилий выключа­ется из дыхания, поскольку толстая роговая чешуя, защищающая рептилий от высыхания, препятствует газообмену, и легкие становятся основным органом дыхания. Дыхательная поверхность легочных мешков резко увеличивается благодаря появлению на их стенках большого количества разветвленных перегородок, в которых проходят кровеносные сосуды.

Одновременно у рептилий наблюдаются прогрессивные изменения в воздухоносных путях. В трахее формируются хрящевые кольца, разделяясь, она дает два бронха. Начинается формирование внутрилегочных бронхов. Отдельные крупные перегородки вдаются глубоко в полость легкого, оставляя свободным лишь узкий центральный вход. Дистальные края перегородок покрыты мерцательным эпителием, а в наиболее крупных из них появляются хрящи. В результате образуются стенки внутрилегочных бронхов.

Млекопитающие обладают легкими наиболее сложного строения. Характерен древовидный тип разветвления бронхов. Основ­ной бронх делится на довольно большое количество вторичных бронхов, те в свою очередь распадаются на еще более мелкие бронхи 3-го порядка, а последние дают многочисленные мелкие бронхи 4-го порядка и т. д., и, наконец, идут тонкостенные трубочки - бронхио­лы. На концах бронхиол находятся мелкие пузырьки, выстланные эпителием, или альвеолы. Стенки каждой альвеолы оплетены густой сетью капилляров, где и происходит газообмен. Количество альвеол достигает огромного числа, благодаря чему дыхательная поверхность резко возрастает.

Таким образом, основное направление эволюции дыхательной системы заключается в увеличении дыхательной поверхности, обо­соблении воздухоносных путей.

(56) Биогенетический з-н. Изучая филогенез ракообразных, Ф. Мюллер обратил внимание на сходство некоторых современных личиночных форм с формами их вымерших предков. На основании этих наблюдений ой сделал заключе­ние о том, что ныне живущие ракообразные в эмбриогенезе как бы повторяют путь, пройденный в историческом развитии их предками. Преобразования индивидуального развития в эволюции, по мнению Ф. Мюллера, происходят путем добавления новых стадий к онтогене­зу родителей. Повторение в онтогенезе потомков признаков нескольких. предков объясняется накоплением таких надставок.

Э. Геккель сформулировал основной биогенети­ческий закон, в соответствии с которым онтогенез представляет собой краткое и быстрое повторение филогенеза.

В качестве доказательств справедливости биогенетического закона используют примеры рекапитуляции. Они заключаются в пов­торении структуры органов взрослых предков на определенных стадиях индивидуального развития потомков. Так, в эмбриогенезе птиц и млекопитающих закладываются жаберные щели и соответствующие им скелетные образования и кровеносные сосуды. Многие признаки личинок бесхвостых амфибий соответствуют признакам взрослых хвостатых амфибий. В эмбриогенезе человека эпидермис кожи сначала представлен однослойным цилиндрическим, затем многослойным неороговевающим, многослойным слабо ороговевающим и, наконец, типичным ороговевающим эпителием. Соответствующие типы эпите­лия встречаются у взрослых хордовых - ланцетника, костистых рыб, хвостатых амфибий.

Согласно Э. Геккелю, новые признаки, имеющие эволюционное значение, возникают во взрослом состоянии. По мере усложнения организации взрослых форм зародышевое развитие удлиняется за счет включения дополнительных стадий.

Признаки предковых форм, повторяющиеся в онтогенезе потомков, Э. Геккелем названы палингенезами. Нарушение биогенетиче-ского закона зависит от тех измене­ний, не имеющих эволюционного значения, которые возникают в ходе индивидуального развития под дей­ствием внешних условий. Они могут заключаться в сдвигании процессов зародышевого развития во времени (гетерохронии) и в простран­стве (г е т е р о т о п и и). Наруше­ния, обусловленные приспособления­ми зародышей к условиям развития, Э. Геккель назвал ценогенеза-м и. Примером гетерохронии служит более ранняя закладка нервной си­стемы и запаздывание в формирова­нии половой системы у высшие позвоночных и человека по сравнению с низшими, гетеротопий - закладка легких, представляющих собой видо­изменение задней пары жаберных мешков, расположенных по бокам кишечника, на его брюшной стороне, ценогенезов - амнион, хорион, аллантоис зародышей наземных позвоночных.

Основываясь на биогенетическом законе, Э. Геккель предложил гипотезу филогенеза многоклеточных организмов. Стадии морей, бластеи, гастреи исторического развития рекапитулируют, по его мнению, в онтогенезе многоклеточных животных как стадии морулы, бластулы, гаструлы.

Теория филэмбриогенезов . Решающее значение для раскрытия связи между онтогенезом и филогенезом имеют труды А. Н. Северцова. Согласно А. Н. Северцову, источником филогенетических преобразований служат изменения, возникающие на ранних этапах онтогенеза, а не у взрослых форм. Если они приводят к развитию признаков, имеющих полезное значение во взрослом состоянии и наследуются, они передаются из поколения в поколение и закрепляются. Такие признаки включаются в филогенез соответствующей группы организмов. Эмбриональные изменения, отражающиеся в дальнейшем на строении взрослых форм и имеющие эволюционное значение, называются филэмбриoгенезами, которые бывают трех типов.

Эмбриогенез может изменяться путем включения дополнительной стадии к уже имевшимся стадиям без искажения последних (анаболия), или же ход эмбриогенеза нарушается в средней его части (девиация). Отклонение от обычного хода развития в начале эмбриогенеза называется архаллаксисом.

Как видно, биогенетическому закону удовлетворяют изменения онтогенеза по типу анаболии. В этом случае зародышевое развитие представляет, по-существу, ряд последовательных рекапитуляции. В случае девиации рекапитуляции наблюдаются, но в ограниченном объеме, а при архаллаксисе они отсутствуют.

Согласно теории филэмбриогенезов изменения на ранних стадиях индивидуального развития составляют основу филогенетических пре­образований органов. Таким образом, онтогенез не только отражает ход эволюции организмов определенного вида, но, претерпевая измене­ния, оказывает влияние на процесс исторического развития той или иной группы животных. Из сказанного следует, что в известном смысле филогенез можно рассматривать как причину онтогенеза (Э. Геккель). Вместе с тем коль скоро эволюционно значимые изменения строения органов во взрослом состоянии происходят путем изменения эмбриоге­неза этих органов, филогенез представляет собой функцию онтогенеза (А. Н. Северцов).

(59) Понятие о расах и видовое единство чел-ва. Современное человечество принадлежит к одному виду Homo sapiens. Это доказывается рождением плодовитого и полноценного потомства в скрещиваниях между представителями резко различающихся по некоторым признакам этногеографических групп населения. Видовое единство людей основывается на воспроизведении трех главных признаков рода Homo - выпрямленного положения тела, хватательного типа верхних конечностей, развитой речевой функции и мышления. Названным признакам принадлежит ведущая роль в обеспе­чении выживания и развития всех гоминид. Значительным консерва­тизмом обладают особенности строения опорно-двигательного аппара­та и головного мозга, от которых зависит прямохождение, орудийная деятельность, социабильность. Представители разных этногеографиче­ских групп характеризуются одинаковым интеллектуальным потенциа­лом. Вместе с тем Человек разумный - это резко политипический вид, что проявляется в наличии трех «больших» рас людей и некоторого числа более мелких групп, различающихся главным образом комплексом внешних признаков.

Выделяют европеоидную (евразийскую), австрало-негроидную (экваториальную) и монголоидную (азиатско-американскую) «большие» расы.

Европеоиды имеют светлую или смуглую кожу, прямые или волнистые волосы, развитый волосяной покров на лице, узкий выступающий нос, тонкие губы. Монголоиды отличаются светлой или смуглой кожей, прямыми, нередко жесткими волосами, уплощенным лицом с выступающими скулами, косым разрезом глаз, выраженным «третьим веком» (эпикантом), средними показателями ширины носа и губ. У австрало-негроидов кожные покровы темные, волосы курчавые шерстистые или волнистые, губы толстые, нос широкий, маловыстугш-юший, с поперечным расположением ноздрей. Представители различ­ных рас отличаются по некоторым физиологическим и биохимическим признакам. Так, основной обмен у негров и у большей части других на­родов экваториальной зоны ниже, чем у европейцев. У последних содержание холестерина в плазме крови достигают 4,64 ммоль/л, тогда как у первых - 3,48 ммоль/л.

Общность основных человеческих признаков и главной линии исторического развития, полноценность потомства в межрасовых браках указывают на то, что разделение на расы относится к достаточно продвинутым стадиям эволюции гоминид. На основании сравнительно-биохимических и антропологических данных предполага­ют, что первоначально в человечестве выделились монголоидная и европеоидно-негроидная расы. Позже из последней выделились евра­зийская и австрало-негроидная. Указанные события имели место, по-видимому, на стадии перехода от палеоантропов к неоантропам.

До эпохи великих географических открытий «большие» расы характеризовались определенным расселением по планете. Представи­тели монголоидной расы размещались на территории Северной, Центральной, Восточной и Юго-Восточной Азии, Северной и Южной Америки, австрало-негроидной - в Старом Свете к югу от тропика Рака, европеоидной - на территории Европы, Северной Африки, Передней Азии, Северной Индии. Многие расовые признаки адаптивно целесообразны в той части Ойкумены, в которой складывались и обитали расы на протяжении многих тысячелетий. К таковым относятся пигментация кожных покровов и шерстистые волосы негрои­дов (повышенный уровень солнечной радиации), крупные размеры носовой полости европеоидов (действие охлажденного в зимний период воздуха), эпикант, узкая глазная щель, своеобразное отложение жировой ткани на лице монголоидов (предохранение глаза от ветра, пыли, отраженного от снега солнечного света и от переохлаждения тканей лица). Можно предположить, что формирование расовых комплексов признаков происходило под действием естественного отбора. Вместе с тем следует избегать упрощенного понимания адаптивной природы таких комплексов в целом. Некоторые признаки, входящие в расовый комплекс, могли появиться в силу коррелятивной изменчивости. Так, главную роль в развитии уплощенности лица монголоидов играли, по-видимому, первичные изменения жевательного аппарата и общей конструкции лицевого скелета. В выделении внутри «больших» рас различных морфологических типов и групп могли играть роль метисация, длительное размножение в популяции с высокой степенью генетического родства, а в отношении народностей, размещавшихся по окраинам Ойкумены, - дрейф генов.

(60) Учение о биосфере. Термин «биосфера» введен австралийским геологом Э. Зюссом в 1875 г. для обозначения особой оболочки Земли, образованной со­вокупностью живых организмов, что соответствует биологи­ческой концепции биосферы. В указанном смысле названный термин используется рядом исследователей и в настоящее время.

Представление о широком влиянии жизни на природные процессы было сформулировано В. В. Докучаевым, который показал зависи­мость процесса почвообразования не только от климата, но и от совокупного" влияния растительных и животных организмов.

В. И. Вернадский развил это направление и разработал учение о биосфере как глобальной системе нашей планеты, в которой основной ход геохимических и энергетических превращений определяется живым веществом. Он распространил понятие биосферы не только на сами организмы, но и на среду их обитания, чем придал концепции биосферы биогеохимический смысл. Большинство явлений, меняющих в масштабе геологического времени облик Земли, рассматривались ранее как чисто физические, химические или физико-химические (размыв, растворение, осаждение, выветривание пород и т. д.). В. И. Вернадский создал учение о геологической роли живых организмов и показал, что деятельность последних представляет собой важнейший фактор преобразования минеральных оболочек планеты.

С именем В. И. Вернадского связано также формирование социальн о-э кономической концепции биосферы, отража­ющей ее превращение на определенном этапе эволюции в ноосферу (см. главу 10) вследствие деятельности человека, которая приобретает роль самостоятельной геологической силы. Учитывая системный принцип организации биосферы, а также то, что в основе ее функциони­рования лежат круговороты веществ и энергии, современной наукой сформулированы биохимическая, термодинамичес­кая, биогеоценотическая, кибернетическая концепции биосферы.

Биосферой называется оболочка Земли, которая населена и активно преобразуется живыми существами. Согласно В. И. Вернад­скому, биосфера - это такая оболочка, в которой существует или существовала в прошлом жизнь и которая подвергалась или подверга­ется воздействию живых организмов. Она включает: 1) живое вещество, образованное совокупностью организмов; 2) биогенное вещество, которое создается и перерабатывается в процессе жизнедея­тельности организмов (газы атмосферы, каменный уголь, нефть, сланцы, известняки и др.); 3) косное вещество, которое образуется без уча­стия живых организмов (продукты тектонической деятельности, метеори­ты); 4) биокосное вещество, пред­ставляющее собой совместный резуль­тат жизнедеятельности организмов и абиогенных процессов (почвы).

Структура и ф-ии б/с. Биосфера представляет собой мно­гоуровневую систему, включающую подсистемы различной степени слож­ности. Границы биосферы определя­ются областью распространения орга­низмов в атмосфере, гидросфере и л«тосфере. Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой ради­ации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину мирового океана, что подтверждается обнаруже­нием живых организмов, и органических отложений до глуби­ны 10-11 км. В литосфере область распространения жизни во многом определяется уровнем проникновения воды в жидком состоянии -живые организмы обнаружены до глубины примерно 7,5 км.

Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и, особенно, биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических

процессов имеют: кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосфе­ры существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Историче­ски развитие атмосферы связано с геохимическими процессами, а также жизнедеятельностью организмов. Так, азот, углекислый газ, пары воды образовались в процессе эволюции планеты благодаря в значительной мере вулканической активности, а кислород- в результате фото­синтеза.

Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в мировом океане, который занимает примерно 70% поверхности земного шара. Общая масса океанических вод составляет свыше 1300 млн. км 3 . Около 24 млн. км 3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км 3 (из них половина соленые), а рек -0,002 млн. км 3 . Количество воды в телах живых организмов достигает примерно 0,001 млн. км 3 . Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация угле­кислого газа также варьирует, а общее количество его в океане в 60 раз превышает его количество в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод.

Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В. И. Вернадского, биокосным веществом, представлены минеральны­ми веществами, образующимися при разрушении горных пород, и органическими веществами - продуктами жизнедеятельности орга­низмов.

Живые организмы (живое вещество) . В настоящее время описано около 300 тыс. видов растений и более 1,5 млн. видов животных. Из этого количества 93% представлено сухопутными, а 7% водными видами животных. Живое вещество по массе составляет 0,01-0,02% от косного вещества биосферы, однако играет ведущую роль в биогеохимических процессах благодаря совершающемуся в живых организмах обмену веществ. Так как субстраты и энергию, используемые в обмене веществ, организмы черпают из окружающей среды, они преобразуют ее уже тем, что живут. Ежегодная продукция живого вещества в биосфере равняется 232,5 млрд. т сухого органического вещества. За это же время в масштабе планеты в процессе фотосинтеза синтезируется 46 млрд. т органического углерода.

Биотический круговорот. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биоти­ческий круговорот осуществляется при участии всех населяющих

планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и раз­витие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами-потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов.

Важная роль в глобальном круговороте веществ принадлежит циркуляции воды между океаном, атмосферой и верхними слоями литосферы. Вода испаряется и воздушными течениями переносится на многие километры. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делая их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворенными в ней химическими соединениями и взвешенными органическими частицами в океаны и моря.

Круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углево­дов используется самими растениями для получения энергии, а часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаться, углерод их тканей окисляется и возвращается в атмосфе­ру. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль е этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращается в атмосферу.

Благодаря биотическому круговороту биосфере присущи опреде­ленные геохимические функции: газовая - биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная -аккуму­ляция живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная - превращение веществ, содержащих атомы с переменной валентностью (например, железо, марганец); биохимическая - процессы, протекающие в живых организмах.

Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте - продуценты (автотрофы), потребители (гетеротрофы) и деструкторы (минерализующие органические остатки) - взаимо-уравновешиваются. Гомеостатическое состояние биосферы не исключа­ет способности ее к эволюции.

(61) Эволюция б/с. На протяже­нии значительного времени существо­вания нашей планеты основными фак­торами, влияющими на эволюцию био­сферы, были геологические и клима­тические процессы. С ними связана эволюция живых организмов.

Первые живые организмы - прока­риоты - появились в архейскую эру. Ими были анаэробы, получавшие энер­гию путем брожения. В качестве пищи они использовали органические веще­ства абиогенного происхождения.

Со временем в первородном океане стали иссякать органические вещества абиогенного происхождения. Появле­ние аутотрофных организмов, особенно зеленых растений, обеспечило дальнейший непрерывный синтез органи­ческих веществ благодаря использо­ванию солнечной энергии. Так созда­лась предпосылка к дальнейшему раз­витию и усложнению форм жизни.

С возникновением фотосинтеза прои­зошла дивергенция органического мира на два ствола, отличающихся спосо­бом питания. Благодаря появлению аутотрофных фотосинтезирующих рас­тений вода и атмосфера стали обога­щаться свободным кислородом. Этим была предопределена возможность появления аэробных организмов, спо­собных к более эффективному исполь­зованию энергии в процессе жизнедея­тельности. Среди этих организмов смог­ли появиться многоклеточные.

Накопление кислорода в атмосфере привело к образованию в верхних ее слоях озонового экрана, не пропуска­ющего губительных для жизни ультра­фиолетовых лучей. Это подготовило возможность выхода первых живых организмов (вначале одноклеточных) на сушу, что осуществилось в кемб­рийском периоде.

Появление фотосинтезирующих рас­тений обеспечило возможность сущест­вования и прогрессивного развития гетеротрофных организмов. Жизнь заполнила различные среды обита­ния.

Уже в середине палеозойской эры содержание кислорода в атмосфере ста­билизировалось на уровне примерно 20 %. Биосфера приобрела динамиче­ское равновесие в деятельности трех групп организмов, осуществляющих различные функции в круговороте ве­ществ в природе - продуцентов (ауто-трофов), потребителей (гетеротрофов) и деструкторов, минерализующих ор­ганическое вещество. Благодаря этому установилось гомеостатическое состоя­ние биосферы.

С возникновением человеческого об­щества в истории биосферы появился новый мощный фактор, равный по сво­ему воздействию грандиозным геологи­ческим процессам. Этот фактор (чело­веческая деятельность) в известной ме­ре нарушил биосферный гомеостаз.

(62) Человек и б/с. С появлением человека биосфера приобрела новое качество. Первоначально воздействие человека на окружающую среду не отличалось от влияния других организ­мов. Извлекаемые человеком из при­роды средства существования восста­навливались естественным путем, а про­дукты его жизнедеятельности посту­пали в общий круговорот веществ. Биосферный гомеостаз не нарушался. Со временем рост численности населе­ния и все возрастающее использование природных ресурсов человеческим об­ществом вылились в мощный экологи­ческий фактор, нарушивший прежнее равновесие в биосфере.

На современном этапе существования нашей планеты наибольшие преобразо­вания в биосфере осуществляются именно человеком. Распахивая огром­ные территории, вырубая леса, созда­вая крупные населенные пункты и промышленные предприятия, добывая полезные ископаемые, сооружая ка­налы, водохранилища, изменяя русла рек, проводя лесонасаждения, человек значительно изменяет природу. Дея­тельность его сказывается на климате, рельефе местности, составе атмосферы, видовом и численном составе флоры и фауны. Использование атомной энер­гии, особенно испытания атомного ору­жия, повлекло за собой накопление радиоактивных веществ в атмосфер­ном воздухе и Мировом океане.

Извлекая из недр и сжигая уголь, нефть, газы, добывая руду и выплав­ляя чистые металлы, создавая сплавы и синтетические вещества, которых не существовало в природе, и новые хи­мические элементы, рассеивая, нако­нец, продукты своей деятельности, че­ловек значительно усиливает биоген­ную миграцию элементов. За время существования человечества общая мас­са живых организмов сокращается, за последние 300 лет биомасса планеты уменьшилась примерно на четверть.

В. И. Вернадский пришел к заклю­чению, что человечество образует в со­вокупности новую оболочку Земли - ноосферу (гр. по- разум), т. е. сферу разумной жизни.

Естественные ресурсы делятся на не­восполнимые и восполнимые. К первым относятся полезные ископаемые, за­пасы которых ограничены. Восполни­мые богатства связаны с жизнедеятель­ностью организмов. Но при нерацио­нальном использовании и они исто­щаются, что может повлечь непопра­вимые изменения в биосфере. В ре­зультате нерациональной деятельности человека только на протяжении не­скольких последних столетий истреб­лено много видов животных и растений. Нередко гидротехнические сооруже­ния лишают рыбу возможности до­браться до нерестилища. Недостаточно очищенные промышленные отходы при спуске их в водоемы губят в них живые существа. Вырубка лесов без учета их воспроизведения приводит к обмеле­нию рек.и эрозии почв. Уменьшение площади лесов, все увеличивающиеся площади возделываемых культур, ис­паряющих значительное количество во­ды, рост городов, дорог и других тер­риторий с покрытиями, препятствую­щими проникновению воды в почву, приводят к обеднению почвы водой, что затрудняет вегетацию растений. Вместе с тем потребность в воде увели­чивается. Перед человечеством встала проблема снабжения пресной водой.

Возникает проблема и с количеством кислорода в атмосфере. Растительный покров -планеты уже не успевает пополнять атмосферу свободным кисло­родом. Поэтому если учесть, что еже­годно человечество увеличивает рас­ход кислорода на 5 %, то через 165 лет

состав его в атмосфере достигнет кри­тического для существования челове­ка предела. Окружающая среда (атмо­сфера, поверхностные и подземные во­ды, почва) нередко загрязняются от­ходами промышленных предприятий.

Существенным фактором воздействия на окружающую среду являются войны. В результате применения аме­риканской армией боевых химических веществ во Вьетнаме уничтожено до 25 % лесов на территории Южного Вьетнама, а накопление в окружающей среде мутагенов и тератогенов привело к учащению рождения детей с ано­малиями.

В настоящее время перед человече­ством возникает вопрос о возможности экологического кризиса, т. е. такого состояния окружающей среды, когда из-за происшедших в ней изменений она может стать непригодной для жизни.

Деятельность человека приводит как к положительным, так и к отрицатель­ным изменениям в биосфере. К числу положительных следует отнести созда­ние новых высокопродуктивных сор­тов культурных растений, пород жи­вотных, штаммов микроорганизмов, ис­кусственное разведение рыбы в морях и Мировом океане, создание культур­ных биогеоценозов и т. д. К отрица­тельным последствиям приводят: нере­гулируемые лесоразработки, массовый сбор дикорастущих растений, охотни­чий и рыбный промыслы; загрязнение вод, атмосферы/и почвы промышлен­ными, сельскохозяйственными и быто­выми отходами, нерациональная об­работка земли, приводящая к эрозии, и т. д. Естественно, что отрицательные воздействия на биосферу необходимо ограничивать.

Быстрый рост населения и интенсив­ное развитие промышленности влекут за собой все возрастающее использова­ние ресурсов живой природы. При этом нередко нерациональное потребление природных богатств приводит к нару­шению биологического равновесия в некоторых сообществах и даже к их ис­тощению и гибели. В связи с этим не­обходимо выяснить мировые ресурсы биосферы для разработки наиболее ра­циональных методов их использования. С этой целью в 1964 г. была создана специальная организация - Между­народная биологическая программа (МБП) сроком на 8 лет. Ее задача заключалась в том, чтобы определить биологическую продуктивность есте­ственных и созданных человеком на­земных и водных растительных и животных сообществ.

Изучение природных биологических ресурсов планеты показало, что недо­статочное питание значительной части человечества в настоящее время не ре­зультат бедности природных ресурсов, а результат капиталистического спо­соба производства и распределения продуктов. Подсчеты показывают, что современный уровень технологии сель­скохозяйственного производства может обеспечить полноценным питанием на­селение, численность которого в не­сколько раз больше современного..

Кроме того, благодаря развитию на-уки (агротехника, селекция) уже в бли­жайшие годы резко повысится урожай­ность сельскохозяйственных культур. Перспективен переход от промысла ры­бы и других обитателей океана к ис­кусственному выращиванию морских организмов. Это будет важным вкла­дом в решение мировой продовольствен­ной проблемы.

(63) Основные понятия экологии. Живые существа, населяющие территории с разнообразными условиями обитания, испытывают на себе влияние последних и сами оказывают действие на окружающую среду. Закономерности взаимо­отношений организмов и среды их обитания, законы развития и суще­ствования биогеоценозов, представляющих собой комплексы взаи­модействующих живых и неживых компонентов в определенных участках биосферы, изучаются специальной биологической наукой экологией.

Экологические закономерности проявляются на уровне осо­би, популяции особей, биоценоза (сообщества), биогеоценоза. Биоценозом (сообществом организмов) называется простран­ственно ограниченная ассоциация взаимодействующих растений и животных, в которой доминируют определенные виды или физический фактор. Предметом экологии, таким образом, являются физиология и поведение отдельных организмов в естественных условиях обитания (аутоэкология), рождаемость, смертность, миграции, внутри­видовые отношения (динамика популяций), межвидовые отношения, потоки энергии и круговороты веществ (син-экология).

К основным методам экологии относятся полевые наблюдения, эксперименты в природных условиях, моделирование процессов и ситуаций, встречающихся в популяциях и биоценозах, с помощью вычислительной техники.

Среда - это вся совокупность элементов, которые действуют на особь в месте ее обитания. Элемент среды, способный оказывать прямое влияние на живой организм хотя бы на одной из стадий инди­видуального развития, называется экологическим фак­тором. В соответствии с распространенной и удобной клас­сификацией экологические факторы делят на биотическиеи абиотические, хотя указанное деление до некоторой степени условно. Абиотический фактор температура может, например, регули­роваться изменением состояния популяции организмов. Так, при снижении температуры воздуха ниже 13°С интенсифицируется двига­тельная активность пчел, что повышает температуру в улье до 25-30°С. Учитывая социальную сущность человека, проявляющуюся в его активном отношении к природе, целесообразно выделение также антропогенных экологических факторов . По мере роста народонаселения и технической вооруженности человече­ства удельный вес антропогенных экологических факторов неуклонно возрастает.

Согласно другой классификации различают первичные и вторичные периодические и непериодические экологические факторы. С действием первичных факторов жизнь столкнулась на ранних стадиях эволюции. К ним относятся температу­ра, изменение положения Земли по отношению к Солнцу. Благодаря им в эволюции возникла суточная, сезонная, годичная периодичность многих биологических процессов. Вторичные периодические факторы являются производными первичных факторов. Например, уровень влажности зависит от температуры, поэтому в холодных областях планеты атмосфера содержит меньше водяных паров. Непериодические факторы действуют на организм или популяцию эпизодически, внезапно. К ним относят стихийные силы природы - извержение вулкана, ураган, удар молнии, наводнение, а также хищник, настигающий жертву, и охотник, поражающий цель.

Обмен газами, или дыхание, выражается в поглощении организмом кислорода из окружающей среды (воды или атмосферы) и выделении в последнюю углекислого газа как конечного продукта протекающего в тканях окислительного процесса, благодаря которому освобождается необходимая для жизнедеятельности энергия. Кислород воспринимается организмом различными способами; их в основном можно характеризовать как: 1) диффузное дыхание и 2) дыхание местное, т. е. специальными органами.
Диффузное дыхание заключается в поглощении кислорода и выделении углекислого газа всей поверхностью наружного покрова-кожное дыхание-и эпителиальной оболочкой пищеварительной трубки-кишечное дыхание, т. е. без специально приспособленных для этого органов. Подобный способ газообмена свойствен некоторым типам примитивных многоклеточных животных, как, например, губкам, кишечнополостным и плоским червям, и обусловливается отсутствием у них системы кровообращения.
Само собой понятно, что диффузное дыхание присуще только организмам, у которых объём тела мал, а поверхность его относительно обширна, так как известно, что объём тела возрастает пропорционально кубу радиуса, а соответствующая поверхность - только квадрату радиуса. Следовательно, при большом объёме тела такой способ дыхания оказывается недостаточным.
Однако и при более или менее соответствующих отношениях объёма к поверхности диффузное дыхание всё же не всегда может удовлетворять организмы, так как чем энергичнее проявляется жизнедеятельность, тем интенсивнее должны протекать окислительные процессы в теле.
При интенсивных проявлениях жизни, несмотря на малый объём тела, необходимо увеличение его площади соприкосновения со средой, содержащей кислород, и особые приспособления для ускорения вентилирования дыхательных путей. Увеличение площади обмена газами достигается развитием: специальных органов дыхания.
Специальные органы дыхания значительно варьируют в деталях построения и местоположения в организме. Для водных животных такими органами служат жабры, для наземных-трахеи у беспозвоночных, а у позвоночных- лёгкие.
Жаберное дыхание. Жабры бывают наружные и внутренние. Примитивные наружные жабры представляют простое выпячивание ворсинчатых отпрысков кожного покрова, обильно снабжённых капиллярными сосудами. Такие жабры в некоторых случаях своей функцией мало чем отличаются от диффузного дыхания, являясь лишь более высокой его ступенью (рис. 332-А, 2). Обычно они концентрируются в передних участках тела.


Внутренние жабры формируются из складок слизистой оболочки начального участка пищеварительной трубки между жаберными щелями (рис, 246-25; 332-7). Прилежащий к ним кожный цокров образует обильные разветвления в виде лепестков с большим количеством капиллярных кровеносных сосудов. Внутренние жабры часто бывают прикрыты специальной складкой кожного покрова (жаберной покрышкой), колебательные движения которой улучшают условия обмена, усиливая приток воды и удаляя использованные её порции.
Внутренние жабры свойственны водным позвоночным, причём акт газообмена у них усложняется пропуском порций воды к жаберным щелям через ротовую полость и движениями жаберной покрышки. Кроме того, жабры у них включены в круг кровообращения. К каждой жаберной дуге подходят свои сосуды, и, таким образом, одновременно осуществляется более высокая диференциация системы кровообращения.


Разумеется, при жаберных способах газообмена может сохраняться и кожное дыхание, но настолько слабое, что оно отодвигается на задний план.
При описании ротоглотки пищеварительного тракта уже было сказано, что жаберный аппарат свойствен и некоторым беспозвоночным, как, например, полухордовым и хордовым животным.
Лёгочное дыхание -весьма совершенный способ газообмена, легко обслуживающий организмы массивных животных. Оно свойственно наземным позвоночным: амфибиям (не в личиночном состоянии), рептилиям, птицам и млекопитающим. К акту газообмена, сосредоточенного в лёгких, присоединяется ряд органов с иными функциями, вследствие чего лёгочный способ дыхания требует развития очень сложного комплекса органов.
Сравнивая водные и наземные типы дыхания позвоночных, следует иметь в виду одно важное анатомическое их различие. При жаберном дыхании порции воды одна за другой поступают в примитивный рот и выпускаются через жаберные щели, где сосудами жаберных складок из неё извлекается кислород. Таким образом, аппарату жаберного дыхания позвоночных свойственны входное и ряд выходных отверстий. При лёгочном дыхании для введения и выведения воздуха используются одни и те же отверстия. Эта особенность, естественно, связана с необходимостью вбирать и выталкивать порции воздуха для более быстрого вентилирования площади газообмена, т. е. с необходимостью расширения и сужения лёгких.
Можно допустить, что у отдалённых, более примитивных предков позвоночных в стенках преобразующегося в лёгкое плавательного пузыря была самостоятельная мускульная ткань; её периодическими сокращениями воздух выталкивался из пузыря, а в результате его расправления в силу эластичности пузырных стенок набирались свежие порции воздуха. Эластическая ткань, наряду с хрящевой, и теперь господствует в качестве опоры в органах дыхания.
В дальнейшем, с повышением жизнедеятельности организмов, такой механизм дыхательных движений становился уже несовершенным. В истории развития он был замещён силой, сосредоточенной или в ротовой полости и переднем участке трахеи (амфибии), или в стенках грудной и брюшной полостей (рептилии, млекопитающие) в виде специально диференцированной части туловищной мускулатуры (дыхательные мускулы) и, наконец, диафрагмы. Лёгкое подчиняется движениям этой мускулатуры, расширяясь и суживаясь пассивно, и сохраняет необходимую для этого эластичность, а также небольшой мышечный аппарат как подсобное приспособление.
Кожное дыхание становится настолько ничтожным, что роль его сводится почти к нулю.
Газообмен в лёгких у наземных позвоночных, так же как у водных, теснейшим образом связан с системой кровообращения посредством организации обособленного, дыхательного, или малого, круга кровообращения.
Вполне понятно, что основные структурные изменения в организме при лёгочном дыхании сводятся: 1) к увеличению соприкосновения рабочей площади лёгких с воздухом и 2) к весьма тесной и не менее обширной связи этой площади с тонкостенными капиллярами круга кровообращения.
Функция дыхательного аппарата-пропускать в свои многочисленные каналы воздух для газообмена-говорит за характер его построения в виде открытой, зияющей системы трубок. Их стенки, по сравнению с мягкой кишечной трубкой, слагаются из более твёрдого опорного материала; местами в виде костной ткани (носовая полость), а главным образом в виде хрящевой ткани и легко податливой, но быстро возвращающейся к норме упругой ткани.
Слизистая оболочка дыхательных путей выстлана специальным мерцательным эпителием. Лишь на немногих участках он видоизменяется в другую форму в соответствии с другими функциями данных участков, как, например, в обонятельной области и в местах самого газообмена.
На протяжении лёгочного дыхательного тракта останавливают на себе внимание три своеобразных участка. Из них начальный-носовая полость-служит для воспринятая воздуха, обследуемого здесь на запах. Второй участок-гортань-является приспособлением для изолирования дыхательного тракта от пищеварительного пути при проходе пищевого кома через глотку, для издавания звуков и, наконец, для производства кашлевых толчков, выбрасывающих из дыхательных путей слизь. Последний участок-лёгкие-представляют орган непосредственного обмена газами.
Между носовой полостью и гортанью располагается общая с пищеварительным аппаратом полость глотки, а между гортанью и лёгким тянется дыхательное горло, или трахея. Таким образом, проходящий воздух используется описанными расширяющимися участками в трёх различных направлениях: а) воспринятия запахов, б) приспособления для издавания звуков и, наконец, в) газообмена, из которых последнее-основное.