Ударный объем левого желудочка составляет в среднем. Основные функциональные показатели работы сердца

Систолический (ударный) объем сердца - это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин - от 40-50 до 90-150 мл (см. табл. 7.1).

СО - это разность между конечно-диастолическим и конечно-систолическим объемами. Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе. В самом начале работы из-за относительной инертности механизмов, приводящих к увеличению кровоснабжения скелетных мышц, венозный возврат возрастает сравнительно медленно. В это время увеличение СО происходит в основном благодаря увеличению силы сокращения миокарда и уменьшению конечно-систолического объема. По мере продолжения циклической работы, выполняемой в вертикальном положении тела, благодаря значительному увеличению потока крови через работающие мышцы и активации мышечного насоса, возрастает венозный возврат к сердцу. Вследствие этого конечно-диастолический объем желудочков у нетренированных лиц со 120-130 мл в покое повышается до 160-170 мл, а у хорошо тренированных спортсменов даже до 200-220 мл. В это же время происходит увеличение силы сокращения сердечной мышцы. Это, в свою очередь, приводит к более полному опорожнению желудочков во время систолы. Конечно-систолический объем при очень тяжелой мышечной работе может уменьшиться у нетренированных до 40 мл, а у тренированных до 10-30 мл. То есть увеличение конечно-диастолического объема и уменьшение конечно-систолического приводят к значительному повышению СО (рис. 7.9).

В зависимости от мощности работы (потребления О2) происходят довольно характерные изменения СО. У нетренированных людей СО максимально увеличивается по сравнению с его уровне м в покое на 50-60%. У большинства людей при работе на велоэргометре СО достигает своего максимума при нагрузках с потреблением кислорода на уровне 40-50% от МПК (см. рис. 7.7). Иначе говоря, при увеличении интенсивности (мощности) циклической работы в механизме увеличения МОК в первую очередь используется более экономичный путь увеличения выброса крови сердцем за каждую систолу. Этот механизм исчерпывает свои резервы при ЧСС, равной 130-140 уд/мин.

У нетренированных людей максимальные величины СО уменьшаются с возрастом (см. рис. 7.8). У людей старше 50 лет, выполняющих работу с тем же уровнем потребления кислорода, что и 20-летние, СО на 15-25% меньше. Можно считать, что возрастное уменьшение СО является результатом снижения сократительной функции сердца и, по-видимому, уменьшения скорости расслабления сердечной мышцы.

Во время физической нагрузки средней интенсивности в поло­жении сидя и стоя МОС примерно на 2 л/мин меньше, чем при выполнении той же нагрузки в положении лежа. Объясняется это скоплением крови в сосудах нижних конечностей из-за действия силы притяжения.

При интенсивной нагрузке минутный объем сердца может воз­растать в 6 раз по сравнению с состоянием покоя, коэффициент утилизации кислорода - в 3 раза. В результате доставка 0 2 к тка­ням увеличивается приблизительно в 18 раз, что позволяет при интенсивных нагрузках у тренированных лиц достичь возрастания метаболизма в 15-20 раз по сравнению с уровнем основного обме­на (А. Оиугоп, 1969).

В возрастании минутного объема крови при физической нагруз­ке важную роль играет так называемый механизм мышечного на­соса. Сокращение мышц сопровождается сжатием в них вен (рис. 15.5), что немедленно приводит к увеличению оттока веноз­ной крови из мышц нижних конечностей. Посткапиллярные сосу­ды (в основном вены) системного сосудистого русла (печень, селе­зенка и др.) также действуют как часть общей резервной системы, и сокращение их стенок увеличивает отток венозной крови (В.И.Дубровский, 1973, 1990, 1992; Л. 5ЬерЬег<1, 1966). Все это способствует усиленному притоку крови к правому желудочку и" быстрому заполнению сердца (К. МагспоИ, 3. Зперпога 1 , 1972).

При выполнении физической работы МОС постепенно увели­чивается до стабильного уровня, который зависит от интенсивнос­ти нагрузки и обеспечивает необходимый уровень потребления кислорода. После прекращения нагрузки МОС постепенно умень­шается. Лишь при легких физических нагрузках увеличение ми­нутного объема кровообращения происходит за счет увеличения ударного объема сердца и ЧСС. При тяжелых физических нагруз­ках оно обеспечивается главным образом за счет увеличения час­тоты сердечных сокращений.

МОС зависит и от вида физических нагрузок. Например, при максимальной работе руками МОС составляет лишь 80% от значе­ний, получаемых при максимальной работе ногами в положении сидя (Л. ЗтепсШег^ет е! а1., 1967).

СОСУДИСТОЕ СОПРОТИВЛЕНИЕ

Под влиянием физических нагрузок существенно изменяется сосудистое сопротивление. Увеличение мышечной активности при­водит к усилению кровотока через сокращающиеся мышцы, при-


чем местный кровоток увеличивается в 12-15 раз по сравнению с нормой (А. Оиутоп е! а1., "№. 5т.атзЬу, 1962). Одним из важнейших факторов, способствующих усилению кровотока при мышечной работе, является резкое уменьшение сопротивления в сосудах, что приводит к значительному снижению общего периферического со­противления (см. табл. 15.1). Снижение сопротивления начинает­ся через 5-10 с после начала сокращения мышц и достигает макси­мума через 1 мин или позже (А. Оиу!оп, 1969). Это связано с рефлекторным расширением сосудов, недостатком кислорода в клетках стенок сосудов работающих мышц (гипоксия). Во время работы мышцы поглощают кислород быстрее, чем в спокойном со­стоянии.

Величина периферического сопротивления различна на разных участках сосудистого русла. Это обусловлено прежде всего изме­нением диаметра сосудов при разветвлении и связанными с ним изменениями характера движения и свойств движущейся по ним крови (скорость кровотока, вязкость крови и др.). Основное сопро­тивление сосудистой системы сосредоточено в ее прекапиллярной части - в мелких артериях и артериолах: 70-80% общего падения давления крови при движении ее от левого желудочка до правого предсердия приходится на этот участок артериального русла. Эти. сосуды называются поэтому сосудами сопротивления или резистив-ными сосудами.

Кровь, представляющая собой взвесь форменных элементов в коллоидно-солевом растворе, обладает определенной вязкостью. Выявлено, что относительная вязкость крови уменьшается с уве­личением скорости ее течения, что связывают с центральным рас­положением эритроцитов в потоке и их агрегацией при движении

Замечено также, что чем менее эластична артериальная стенка (т. е. чем труднее она растягивается, например при атеросклеро­зе), тем большее сопротивление приходится преодолевать сердцу для проталкивания каждой новой порции крови в артериальную систему и тем выше поднимается давление в артериях при систоле.

РЕГИОНАЛЬНЫЙ КРОВОТОК

Кровоток в органах и тканях при значительной физической на­грузке существенно изменяется. Работающие мышцы требуют уси­ления обменных процессов и значительного увеличения доставки кислорода. Кроме того, усиливается терморегуляция, так как до­полнительное тепло, вырабатываемое сокращающимися мышцами, должно быть отведено к поверхности тела. Увеличение МОС само


по себе не может обеспечить адекватное кровообращение при зна­чительной работе. Чтобы условия для обменных процессов были благоприятными, наряду с увеличением минутного объема сердца требуется еще и перераспределение регионального кровотока. В табл. 15.2 и на рис. 15.6 представлены данные о распределении кровотока в покое и во время физических нагрузок различной ве­личины.

В состоянии покоя кровоток в мышце составляет около 4 мл/мин на 100 г мышечной ткани, а при интенсивной динамической работе возрастает до 100-150 мл/мин на 100 г мышечной ткани (В.И. Дубровский, 1982; 3. Зспеггег, 1973; и др.).


интенсивности нагрузки и обычно длится от 1 до 3 мин. Хотя ско­рость кровотока в работающих мышцах увеличивается в 20 раз, аэробный обмен может возрастать в 100 раз за счет повышения утилизации 0 2 с 20-25 до 80%. Удельный вес кровотока в мышцах может возрасти с 21% в покое до 88% при максимальных нагруз­ках (см. таблицу 15.2).

Во время физической нагрузки кровообращение перестраива­ется в режим максимального удовлетворения потребностей в кис­лороде работающих мышц, но если количество получаемого рабо­тающей мышцей кислорода меньше требуемого, то обменные процессы в ней протекают частично анаэробно. В результате воз­никает кислородный долг, который возмещается уже после окон­чания работы.

Известно, что анаэробные процессы в 2 раза менее эффектив­ны, чем аэробные.

Кровообращение каждой сосудистой области имеет свою спе­цифику. Остановимся на коронарном кровообращении, которое


существенно отличается от других видов кровотока. Одной из его особенностей является сильно развитая сеть капилляров. Их чис­ло в сердечной мышце на единицу объема превышает в 2 раза коли­чество капилляров, приходящихся на такой же объем скелетной мышцы. При рабочей гипертрофии число сердечных капилляров еще более возрастает. Столь обильным кровоснабжением частич­но объясняется способность сердца извлекать из крови кислорода больше, чем другие органы.

Резервные возможности кровообращения миокарда этим не исчерпываются. Известно, что в скелетной мышце в состоянии покоя функционируют далеко не все капилляры, тогда как число раскрытых капилляров в эпикарде составляет 70%, а в эндокар­де - 90%. Тем не менее, при возросшей потребности миокарда в кислороде (скажем, при физической нагрузке) эта потребность удовлетворяется в основном за счет усиления коронарного крово­тока, а не лучшей утилизации кислорода. Усиление коронарного кровотока обеспечивается увеличением емкости коронарного рус­ла в результате снижения тонуса сосудов. В обычных условиях то­нус коронарных сосудов высок, при его снижении емкость сосудов может возрасти в 7 раз.

Коронарный кровоток во время физической нагрузки возраста­ет пропорционально увеличению минутного объема сердца (МОС). В покое он составляет около 60-70 мл/мин на 100 г миокарда, при нагрузке может усиливаться более чем в 5 раз. Даже в покое ути­лизация кислорода миокардом очень велика (70-80%) и любое повышение потребности в кислороде, возникающее при физических нагрузках, может обеспечиваться только увеличением коронарно­го кровотока.

Легочный кровоток во время физической нагрузки значитель­но возрастает, и происходит перераспределение крови. Содержа­ние крови в легочных капиллярах повышается с 60 мл в покое до 95 мл при напряженной нагрузке (Р. Коп^Моп, 1945), а в целом в системе легочных сосудов - с 350-800 мл до 1400 мл и более (К. Апаегзеп е! аЦ 1971).

При интенсивных физических нагрузках площадь поперечного сечения легочных капилляров увеличивается в 2-3 раза, и скорость прохождения крови через капиллярное ложе легких возрастает в 2-2,5 раза (К. Лоппзоп е! а1., 1960).

Установлено, что в покое часть капилляров в легких не функци­онирует.

Изменение кровотока во внутренних органах играет важнейшую роль в перераспределении регионарного кровообращения и улуч­шении кровоснабжения работающих мышц при значительных фи-




зических нагрузках. В покое кровообращение во внутренних орга­нах (печень, почки, селезенка, пищеварительный аппарат) состав­ляет около 2,5 л/мин, т. е. около 50% минутного объема сердца. По мере увеличения нагрузок величина кровотока в этих органах постепенно уменьшается, и его показатели при максимальной фи­зической нагрузке могут свестись к 3-4% минутного объема серд­ца (см. табл. 15.2). Например, печеночный кровоток при тяжелой физической нагрузке снижается на 80% (Ь. Ко\уе11 е\ а1., 1964). В почках во время мышечной работы кровоток уменьшается на 30-50%, причем это уменьшение пропорционально интенсивности нагрузки, а в отдельные периоды очень кратковременной интен­сивной работы почечный кровоток может даже прекратиться (Ь. КасН^ип, 5. КаЫпзоп, 1949; .1. СазМогз 1967; и др.).

Основной физиологической функцией сердца является выброс крови в сосудистую систему. Поэтому количество изгоняемой из желудочка крови является одним из важнейших показателей функционального состояния сердца.

Количество крови, выбрасываемой желудочком сердца в 1 минуту, называется минутным объемом крови. Он одинаков для правого и левого желудочка. Когда человек находится в состоянии покоя, минутный объем составляет в среднем около 4,5-5 л.

Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем крови . При ритме сердечных сокращений 70-75 в минуту систолический объем равен 65-70 мл крови.

Определение минутного объема крови у человека применяется в клинической практике.

Наиболее точный способ определения минутного объема крови у человека был предложен Фиком. Он состоит в косвенном вычисления минутного объема сердца, которое производят, зная:

  1. разницу между содержанием кислорода в артериальной и венозной крови;
  2. объем кислорода, потребляемого человеком в 1 минуту. Допустим, что в 1 минуту через легкие в кровь поступило 400 мл кислорода и что количество кислорода в артериальной крови на 8 об.% больше, чем в венозной. Это означает, что каждые 100 мл крови поглощают в легких 8 мл кислорода, следовательно, чтобы поглотить все количество кислорода, которое поступило через легкпе в кровь в 1 минуту, т. е. в нашем примере 400 мл, необходимо, чтобы через лёгкие прошло 100·400/8=5000 мл крови. Это количество крови и составляет минутный объем крови, который в данном случае равен 5000 мл.

При использовании этого метода необходимо брать смешанную венозную кровь из правой половины сердца, так как кровь периферических вен имеет неодинаковое содержание кислорода в зависимости от интенсивности работы органов тела. В последние годы смешанную венозную кровь у человека берут прямо из правой половины сердца при помощи зонда, вводимого в правое предсердие через плечевую вену. Однако по понятным причинам этот метод взятия крови не имеет широкого применения.

Для определения минутного, а следовательно, и систолического объема крови разработан еще ряд других методов. Многие из них основаны па методическом припципе, предложенном Стюартом и Гамильтоном. Он состоит в том, что определяют разведение и скорость циркуляции какого-либо вещества, введенного в вену. В настоящее время для этого широко применяют некоторые краски и радиоактивные вещества. Введенное в вену вещество проходит через правое сердце, малый круг кровообращения, левое сердце и поступает в артерии большого круга, где и определяют его концентрацию.

Последняя волнообразно спачала парастает, а затем падает. На фоне умепьшения концентрации определяемого вещества через некоторое время, когда порция крови, содержавшая максимальное его количество, вторично пройдет через левое сердце, его концентрации в артериальной крови вновь немного увеличивается (это так называемая волна рециркуляции) (рис. 28 ). Замечают время от момента введения вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. изменения концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количество вещества, введенного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества через всю систему кровообращения, можно вычислить минутный объем крови но формуле: минутный объем в л/мин= 60·I/C·T, где I - количество введенного вещества в миллиграммах; С - средняя концентрация его в мг/л, вычисленная по кривой разведения; Т - длительность первой волны циркуляции в секундах.

Рис. 28. Полулогарифмическая концентрационная кривая краски, введенной в вену. R - волна рециркуляции.

Сердечно-легочный препарат . Влияние различных условий на величину систолического объема сердца можно исследовать в остром опыте посредством методики сердечно-легочного препарата, разработанной И. II. Павловым и Н. Я. Чистовичем и позднее усовершенствованной Э. Старлингом.

При этой методике у животного выключают большой круг кровообращения путем перевязки аорты и полых вен. Венечное кровообращение, а также кровообращение через легкие, т. е. малый круг, сохраняют неповрежденным. В аорту и полую вену вводят канюли, которые соединяют с системой стеклянных сосудов и резиновых трубок. Кровь, выбрасываемая левым желудочком в аорту, течет по этой искусственной системе, поступает в полые вены и затем в правое предсердие п правый желудочек. Отсюда кровь направляется в легочный круг. Пройдя капилляры легких, которые ритмически раздувают мехами, кровь, обогащенная кислородом и отдавшая углекислоту, так же как и в нормальных условиях, возвращается в левое сердце, откуда она вновь течет в искусственный большой круг из стеклянных и резиновых трубок.

Путем специального приспособления имеется возможность, изменяя сопротивление, встречаемое кровью в искусственном большом круге, увеличивать или уменьшать приток крови к правому предсердию. Таким образом, сердечно-легочный препарат дает возможность по желанию изменять нагрузку сердца.

Опыты с сердечно-легочным препаратом позволили Старлингу установить закон сердца. При увеличении кровенаполнения сердца в диастолу и, следовательно, при увеличенном растяжении мышцы сердца сила сердечных сокращений возрастает, поэтому увеличивается отток крови от сердца, иначе говоря, систолический объем. Эта важная закономерность наблюдается и при работе сердца в целостном организме. Если увеличить массу циркулирующей крови введением физиологического раствора и тем самым увеличить приток крови к сердцу, то увеличивается систолический и минутный объем (рис. 29 ).

Рис. 29. Изменения давления в правом предсердии (1), минутного объема крови (2) и частоты сердечных сокращений (цифры под кривой) при увеличении количества циркулирующей крови в результате введения солевого раствора в вену (по Шарпей - Шеферу). Период введения раствора отмечен черной полосой.

Зависимость силы сердечпых сокращений и величины систолического объёма от кровенаполнения желудочков в диастолу, а следовательно, от растяжения их мышечных волокон наблюдается в ряде случаев патологии.

При недостаточности полулунного клапана аорты, когда имеется дефект этого клапана, левый желудочек во время диастолы получает кровь не только из предсердия, но и из аорты, так как часть выброшенной в аорту крови возвращается в желудочек обратно через отверстие в клапане. Желудочек поэтому перерастягивается избыточным количеством крови; соответственно, но закону Старлинга, нарастает сила сердечных сокращений. В итоге благодаря увеличенной систоле, несмотря на дефект аортального клапана и возврат части крови в желудочек из аорты, кровоснабжение органов сохраняется на нормальном уровне.

Изменения минутного объема крови при работе . Систолический и минутный объемы крови не являются постоянными величинами, напротив, они весьма изменчивы в зависимости от того, в каких условиях находится организм и какую работу он совершает. При мышечной работе происходит очень значительное увеличение минутного объема (до 25-30 л). Это может быть обусловлено учащением сердечных сокращений п увеличением систолического объема. У нетренированных людей увеличение минутного объема обычно происходит за счет учащения ритма сердечных сокращений.

У тренированных же людей при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. При очень большой работе, например при требующих огромного напряжения спортивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается также учащение сердечных сокращений. Учащение сердечного ритма в сочетании с увеличением систолического объема обусловливает очень большое увеличение минутного объема, а следовательно, и увеличение кровоснабжения работающих мышц, чем создаются условия, обеспечивающие большую работоспособность. Число сердечных сокращений у тренированных людей может достигать при очень большой нагрузке 200 и более в минуту.

Оглавление темы "Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.":
1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.
2. Классификация системы кровообращения. Функциональные классификации системы кровообращения (Фолкова, Ткаченко).
3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?
4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы (ССС).
5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.
6. Общее периферическое сопротивление сосудов (ОПСС). Уравнение Франка.

8. Частота сердечных сокращений (пульс). Работа сердца.
9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.
10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.

В клинической литературе чаще используют понятие «минутный объем кровообращения » (МОК ).

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Размерность минутного объема кровообращения - л/мин или мл/мин. Чтобы нивелировать влияние индивидуальных антропометрических различий на величину МОК, его выражают в виде сердечного индекса . Сердечный индекс - это величина минутного объема кровообращения, деленная на площадь поверхности тела в м. Размерность сердечного индекса - л/(мин м2).

В системе транспорта кислорода аппарат кровообращения является лимитирующим звеном, поэтому соотношение максимальной величины МОК, проявляющейся при максимально напряженной мышечной работе, с его значением в условиях основного обмена дает представление о функциональном резерве сердечно-сосудистой системы. Это же соотношение отражает и функциональный резерв сердца в его гемодинамической функции. Гемодинамический функциональный резерв сердца у здоровых людей составляет 300-400 %. Это означает, что МОК покоя может быть увеличен в 3-4 раза. У физически тренированных лиц функциональный резерв выше - он достигает 500-700 %.

Для условий физического покоя и горизонтального положения тела испытуемого нормальные величины минутного объема кровообращения (МОК) соответствуют диапазону 4-6 л/ мин (чаще приводятся величины 5-5,5 л/мин). Средние величины сердечного индекса колеблются от 2 до 4 л/(мин м2) - чаще приводятся величины порядка 3-3,5 л/(мин м2).

Рис. 9.4. Фракции диастолической емкости левого желудочка.

Поскольку объем крови у человека составляет только 5-6 л, полный кругооборот всего объема крови происходит примерно за 1 мин. В период тяжелой работы МОК у здорового человека может увеличиваться до 25- 30 л/мин, а у спортсменов - до 30-40 л/мин.

Факторами, определяющими величину величины минутного объема кровообращения (МОК) , являются систолический объем крови, частота сердечных сокращений и венозный возврат крови к сердцу.

Систолический объем крови . Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

В покое объем крови , выбрасываемый из желудочка, составляет в норме от трети до половины общего количества крови, содержащейся в этой камере сердца к концу диастолы. Оставшийся в сердце после систолы резервный объем крови является своеобразным депо, обеспечивающим увеличение сердечного выброса при ситуациях, в которых требуется быстрая интенсификация гемодинамики (например, при физической нагрузке, эмоциональном стрессе и др.).

Таблица 9.3. Некоторые параметры системной гемодинамики и насосной функции сердца у человека (в условиях основного обмена)

Величина систолического (ударного) объема крови во многом предопределена конечным диастолическим объемом желудочков. В условиях покоя диастолическая емкость желудочков сердца подразделяется на три фракции: ударного объема, базального резервного объема и остаточного объема. Все эти три фракции суммарно составляют конечно-диастолический объем крови, содержащийся в желудочках (рис. 9.4).

После выброса в аорту систолического объема крови оставшейся в желудочке объем крови - это конечно-систолический объем. Он подразделяется на базальный резервный объем и остаточный объем. Базальный резервный объем - это количество крови, которое может быть дополнительно выброшено из желудочка при увеличении силы сокращений миокарда (например, при физической нагрузке организма). Остаточный объем - это то количество крови, которое не может быть вытолкнуто из желудочка даже при самом мощном сердечном сокращении (см. рис. 9.4).

Величина резервного объема крови является одной из главных детерминант функционального резерва сердца по его специфической функции - перемещению крови в системе. При увеличении резервного объема, соответственно, увеличивается максимальный систолический объем, который может быть выброшен из сердца в условиях его интенсивной деятельности.

Регуляторные влияния на сердце реализуются в изменении систолического объема путем воздействия на сократительную силу миокарда. При уменьшении мощности сердечного сокращения систолический объем снижается.

У человека при горизонтальном положении тела в условиях покоя систолический объем составляет от 60 до 90 мл (табл. 9.3).