Зубы по новой технологии кад кам. Технология CAD-CAM В Современной Стоматологии

Стекловидная керамика

Нанокерамика

Цирконий

Процесс фрезеровки

Заключение

Каждый из этапов CAD/CAM производства стоматологических конструкций (будь то сбор цифровых данных, их обработка адаптированным программным обеспечением или непосредственно процесс изготовления протеза или коронки) продолжает независимо развиваться и совершенствоваться, обеспечивая, таким образом, еще большую точность и эффективность ортопедических работ, изготовленных методом цифрового моделирования и фрезерования. Вместе с тем в практику CAD/CAM внедряются все новые материалы керамики, полимеров и металлов, которые позволяют изготавливать все виды конструкций: от простых колпачков и коронок до цельнодуговых протезов, съемных аппаратов, провизорных единиц, позиционеров и хирургических шаблонов. В лабораториях CAD/CAM также используют материалы для изготовления моделей, или образцов, которые подлежат выгоранию в ходе литья или прессования.

CAD/CAM керамику наиболее часто используют именно в реставрационной стоматологии, поскольку внедрение подобного подхода значительно изменило ключевые клинические аспекты в данной практической отрасли. Большинство мостовидных конструкций, а также одиночных коронок в наше время изготавливается именно посредством CAD/CAM технологий с использованием новых видов керамических материалов. CAD/CAM керамики эволюционировали от классического полевошпатного аналога с высокими эстетическими характеристиками, но хрупкого по своей природе, до современных брендовых представителей, которые весьма значительно отличаются между собой параметрами прочности, гибкости и эстетики. Конструкции, изготовленные из таких материалов, уже давно доказали свою клиническую эффективность и являются достойной заменой традиционным металлокерамическим реставрациям.

До недавнего времени клиницисты были ограничены в выборе керамических материалов CAD/CAM: прочные материалы не обладали достаточной эстетичностью, а эстетические – достаточной прочностью. Но сегодня эстетические параметры высокопрочных материалов позволяют добиться максимального клинически эффективного результата вне зависимости от объема работы: будь то единичная коронка или цельнодуговая конструкция, замещающая полную адентию челюсти. Монолитные реставрации CAD/CAM менее подвержены риску неудачи ввиду отсутствия разницы между базисным и покрывным материалами, а процесс их изготовления является довольно быстрым и легким, не требующим трудоемких дополнительных затрат и высококвалифицированных знаний относительно особенностей нанесения разных слоев покрытия.

Стекловидная керамика

Стекловидная керамика является уникальным CAD/CAM материалом, который используется для изготовления вкладок, коронок и виниров вот уже на протяжении 30 лет. При адекватном использования данного рода материалов (должный алгоритм препарирования, адаптированный метод обработки керамики и надежный протокол бондинга), они обеспечивают достаточно высокий уровень клинического успеха и эстетической реабилитации. Однако в случаях с чрезмерно тонкими границами, несоответствием поверхностей и недостаточной адгезивной связью со структурой зуба, эффективность применения конструкций из стекловидной керамики оставляет желать лучшего. Для отдельных случаев более подходящими являются другие виды материалов, но для виниров лучшим материалом выбора остается стеклокерамика. Стекловидная керамика доступна в форме многослойных блоков, отличающихся оттенками цвета. Кроме того, ее можно дополнительно подкрасить или изменить оттенок путем наложения дополнительного слоя, что в большинстве случаев решает проблемы индивидуального подбора цвета будущей эстетической конструкции.

Нанокерамика

Данная группа материалов сочетает в себе эластичность композитов и прочность керамических аналогов. Нанокерамику нельзя окрасить в печи, что ограничивает их использование для реставраций во фронтальной области, но для придания им соответствующего оттенка существуют целые реставрационные наборы, которые помогают достичь максимальной адаптации цвета. Совсем недавно 3M ESPE перестала предлагать использовать собственную Lava Ultimate для изготовления коронок по причине частых случаев нарушения бондинга ортопедической конструкции с тканями зуба. Вкладки и накладки же являются прямыми показаниями для использования нанокерамики в ходе фрезерования из-за отсутствия тонких краев, чувствительных к сколам, меньшей гибкости и лучшей адгезии подобных конструкций. С клинической точки зрения, накладки и вкладки из нанокерамики изготавливаются довольно быстро, при этом точно и легко полируются в ходе их конечной примерки и фиксации.

Литий силикатная стеклокерамика

Литий дисиликат был введен в стоматологическую индустрию компанией Ivoclar Vivadent под названием Empress II еще в 1998 году. Поначалу материал был слишком опаковым, поэтому покрывную керамику спекали прямо на дисиликатной субструктуре. Но Ivoclar не остановился и, продолжая совершенствовать эстетические параметры дисиликатных материалов, добился успехов: сегодня литий дисиликат представлен на рынке разными степенями прозрачности, благодаря чему его можно использовать как для виниров, так и для одиночных коронок или мостовидных конструкций, перекрывающих область премоляров. Также данный материал эффективно используется для изготовления абатментов и коронок с опорой на имплантаты. На сегодняшний день прочность, эстетика и сила фиксации литий силикатных конструкций с использованием обычных композитных цементов доказана научно и клинически, поэтому универсальность данной группы материалов не вызывает никаких сомнений.

Ряд компаний представили на рынке аналоги данных материалов, обладающие сопоставимыми параметрами прочности. К таким продуктам относятся Obsidian (Prismatik Dentalcraft Inc.) - литий силикат и CELTRA Duo (DENTSPLY International) – цирконий, армированный литий силикатом. Их конечный цвет определяется непосредственно перед процессом спекания, однако достаточного количества данных относительно их эффективности для изготовления IPS e.max (Ivoclar Vivadent) пока что не получено. Кроме того, данные коммерческие представители литий дисиликата нельзя наносить слоями, а спектр их оттенков прозрачности значительно ограничен. Данный тип материалов часто является лучшим выбором для одиночных реставраций или же для трехединичных мостовидных протезов во фронтальной области.

Цирконий

Первоначально цирконий рассматривался только как материал для изготовления субструктуры ввиду своей высокой опаковости. Параметр прочности на изгиб у циркония аналогичный таковому у металлов, однако, при покрытии его более прозрачной керамикой возникает риск возникновения сколов в процессе функционирования. За последние десять лет производители все-таки добились того, что новые циркониевые материалы с адаптированными уровнями прозрачности могут быть использованы для изготовления эстетических коронок и мостов во фронтальной области. Циркониевые блоки для фрезерования в настоящее время имеют мультинабор оттенков, обеспечивая, таким образом, возможности для полноценного изготовления коронок более опаковых у десны и более прозрачных у режущего края. Как правило, чем материал циркония более эстетичен, тем он менее прочен, однако даже таких уровней прочности достаточно для того, чтобы мостовидные конструкции успешно функционировали во фронтальной области. Также преимуществом циркония является высокая сила его сцепления даже при использовании обычных цементов, но, в то же время, данные материалы довольно сложно фрезеровать и модифицировать при необходимости корректировки. Практикующий стоматолог должен знать, какой вид циркония лучше выбирать для реставрации задней группы зубов, поскольку вариабельность прочности материалов, как и их эстетических параметров, довольно широка.

Процесс фрезеровки

Все три категории CAD/CAM материалов (полимеры, металлы и керамики) могут быть обработаны технологией субтрактивного производства, при которой часть материала удаляется из монолитного блока или диска до тех пор, пока не будет достигнута запланированная форма будущей конструкции. Финальный вид коронки или моста достигается благодаря конечным процессам фрезерования или шлифования излишков материала, а в случае с металлами – посредством электроэрозионной обработки. Значительным преимуществом субтрактивного производства является то, что монолитные блоки и диски изготавливаются под промышленным контролем, поэтому в их качестве сомневаться не приходится. Кроме того, данный момент в отношении керамики помогает избежать возникновения дефектов, возникающих вследствие внутренних напряжений и усадки, спровоцированных природой процесса послойного нанесения. В случае с металлами, производство конструкций из монолитного блока исключает аспекты деформации материала в результате отливки при периодическом нагревании с последующим охлаждением. Таким образом, любой материал благодаря CAD/CAM технологиям может обеспечить получение более прочных и эстетических конструкций по сравнению с традиционными лабораторными методами изготовления вкладок, коронок или мостов. С другой стороны, существует целый спектр материалов, разработанных именно для CAD/CAM производства, которые не могут быть использованы в обычной лаборатории.

Субтрактивный метод обработки, однако, может быть несколько неэкономичным, так как большая часть монолитного блока измельчается и стает непригодной для дальнейшего использования. Фрезерные боры, которые со временем изнашиваются, при длительном использовании также не обеспечивают достаточной точности. В случаях с керамикой, процесс фрезерования может провоцировать возникновение стрессов и трещин в структуре материала. Но, даже несмотря на такие недостатки CAD/CAM технологий, фрезерный метод изготовления конструкций является куда более точным и экономичным, чем обычный лабораторный метод изготовления реставраций.

Аддитивный метод изготовления конструкций используется преимущественно при работе с пластмассами или металлами. Данный процесс предусматривает нанесение тонких слоев (толщиной около 30 мкм) материала для воссоздания адекватного трехмерного объекта. Подобный метод производства может быть реализован посредством разных технологий: трехмерного принтинга, стереолитографии и лазерной сварки. Метод формирования жидкой межфазной границы (continuous liquid interface production - CLIP) является неким ноу-хау даже в среде CAD/CAM технологий, обеспечивающим уникальную точность и эффективность. Конечный продукт при данной технологии производится из "бассейна жидкости" посредством воссоздания некой межфазной границы. В случаях с 3D печатью, в первое время данный метод подходил только для изготовления прототипов, но в данное время он значительно расширил свои возможности. С возможностью печати пластмасс разного цвета он становится все более эффективным для изготовления монолитных пластмассовых протезов. Относительно коронок и мостов, вышеупомянутые методы являются без преувеличения революционными, поскольку позволяют использовать материалы с максимально улучшенными механическими свойствами, индивидуализировать и адаптировать конструкцию, а также исключают недостаток субтрактивного метода – наличие огромного количества дорогих, но не пригодных для дальнейшего производства отходов.

Заключение

CAD/CAM материалы продолжают быстро развиваться и совершенствоваться, обеспечивая стоматологов новыми более эффективными возможностями для лечения пациентов. Поэтому врачи должны быть осведомлены о спектре доступных материалов, чтобы обеспечить индивидуализированный подход к каждой клинической ситуации. Несомненно, существующие материалы будут и впредь развиваться, инициируя возникновения новых методов CAD/CAM производства, а поэтому мониторинг динамики прогресса и совершенствования обеспечит более адаптивный поход к выбору алгоритма лечения каждого отдельного пациента.

CAD/CAM расшифровывается как «Computer Assisted Design/Computer Aided Manufacturing», что в переводе на русский звучит как«компьютерный дизайн/производство под управлением компьютера».

CAD/CAM системы уже длительное время успешно применяются в различных отраслях машиностроения, а также в ювелирной промышленности.

В стоматологии CAD/CAM системы применяются для производства каркасов зубных протезов с помощью конструирования на компьютере и фрезерования на станках с числовым программным управлением.

Это самая современная, на сегодняшний день, технология производства каркасов зубных протезов.

Что можно изготовить при использовании CAD/CAM систем?

· одиночные коронки и мосты малой и большой протяженности;

· телескопические коронки;

· индивидуальные абатменты для имплантатов;

· воссоздать полную анатомическую форму для моделей пресс-керамики, наносимой на каркас (overpress);

· создать временные коронки в полный профиль и различные литьевые модели.

Какие материалы используются в CAD/CAM?

диоксид циркония, титан, кобаль-хромовый сплав, пластмасса, воск.

Преимущества CAD/CAM систем по сравнению с традиционным методом:

· Высочайшая точность работ (отклонение размеров 15-20 мкм в сравнении с 50-70 мкм при литье)

· Не требуется высокая квалификация и большой опыт работы оператора системы

· Систему может обслуживать один человек

· Экономия рабочего места

· Экономия рабочего времени (в пять раз быстрее)

· Чистота работы

· Большая производительность (до 120 единиц в сутки)

Этапы работы системы CAD/CAM:

1. Гипсовая модель поступает во фрезерный центр.

2. Гипсовая модель сканируется с помощью специального устройства (сканера). Сканер преобразует информацию о внешнем виде модели в компьютерный файл. Далее с помощью специальной компьютерной программы моделирования (CAD-модуль) на модели конструируется каркас, абатмент, супраструктура и т.д. Программа предлагает конструкцию, а техник может изменять ее движениями компьютерной «мышки» примерно так, как на гипсовой модели делается восковая композиция электрошпателем.

3. После моделирования файл с конструкцией поступает в блок управления фрезерной машины. В зависимости от выбранного материала фрезерная машина выпиливает (фрезерует) из заготовки каркас. В результате в материале воплощается трехмерная модель, созданная ранее на компьютере. Если материалом был выбран диоксид циркония, после фрезерования конструкция нуждается в спекании (агломерации).

4. Каркас из диоксида циркония помещается в специальную агломерационную печь, в которой он приобретает окончательный размер, цвет и прочность.

5. Прочный, эстетичный, точный и легкий каркас готов.

Что необходимо для работы с CAD/CAM системой?

· Помещение – от 10 кв м, один оператор

· Сканер

· Фрезерная машина

· Пылесос (можно обычный хозяйственный)

· Печь для спекания каркасов из диоксида циркония

· Диски из оксид циркония

Какие бывают системы CAD/CAM?

Системы CAD/CAM делятся на два вида: «открытые» и «закрытые».

К «закрытым» системам относятся такое оборудование, которое может работать только с определенными расходными материалами (дисками, блоками из оксида циркония и пр), производимыми как правило одной компанией. Например, Cerec и inLab от Sirona; Cercon от DeguDent.

CAD/CAM (англ. Computer— aided Design, Computer— aided manufacturing) — это собирательное название современных технологий, позволяющих автоматизировать процесс изготовления ортопедических реставраций. Раньше для создания искусственной коронки или вкладки требовалось 2-4 посещения, разделённых несколькими днями ожидания. Период ожидания был необходим для того, чтобы зубной техник смоделировал и воспроизвёл реставрацию из металла или керамикиСегодня благодаря кад/кам-технологиям появилась возможность изготовить коронку или вкладку на зуб в течение одного дня.

Если говорить конкретно, что CAD/CAM — это комплекс, включающей следующее оборудование:

Сканер нужен для создания виртуальной 3d-модели зубов пациента. Существуют как внутриротовое сканеры, «оцифровывающие» непосредственно ситуацию в полости рта, так и обычные, сканирующие предварительно изготовленные гипсовые модели челюстей пациента.

Полученная трёхмерная модель зубов пациента обрабатывается в компьютерной программе, где в автоматическом (или полуавтоматическом) режиме для разрушенного зуба создаётся виртуальная модель будущей реставрации (вкладки, коронки или винира), необходимой для возмещения дефекта. Интерфейс CAD/CAM — программы похож на трёхмерный редактор. Врач имеет возможность создать или изменить любой элемент смоделированной реставрации: высоту бугром, выраженность рельефа, кривизну стенок и т.д. Когда моделирование будет закончено, файл с моделью реставрации отправляется на фрезерный станок.

Реставрация, которая была смоделирована на предыдущем этапе, автоматически вытачивается на фрезерном станке. Как выглядит этот процесс показано на видео ниже. В качестве материала используются стандартные керамические или металлические заготовки.

Идеи применения CAD/CAM-системы для изготовления стоматологических реставраций появилась в 1971 году. Первые прототипы были громоздкие и неудобные в работе. К тому же, сканеры, используемые для создания виртуальных моделей, давали сильные искажения. Сегодня эти проблемы решены. Точность «цифрового оттиска» не уступает оттиску, полученному по классической методике. Программное обеспечение значительно улучшилось, и процесс виртуального моделирования будущей реставрации превратился в творчество. Точность фрезерных станков также повысилась благодаря одновременному использованию нескольких фрез и уменьшению их диаметра. В России сегодня представлены следующие cad/cam системы: Cerec, Organical, Katana и др.

Коронки, изготовленные по разным технологиям, могут не отличаться по внешнему виду. Пациент в любом случае получит высокоэстетичную реставрацию, восстанавливающую красоту улыбки и функцию пережевывания пищи. Однако использование кад/кам-систем позволяет упростить и ускорить изготовление реставраций:

Во-первых, уменьшается общее время, необходимое для создания коронки, вкладки и т.д.

Во-вторых, вместо традиционных оттискных материалов врач может использовать внутриротовой сканер, который «оцифровывает» ситуацию в полости рта. Это избавляет пациента от необходимости проходить через процедуру снятия обычных слепков. Особенно актуальным это является для людей с выраженным рвотным рефлексом.

Пациент непосредственно ВИДИТ, как врач вначале на компьютере моделирует индивидуальную коронку, которая затем автоматически вытачивается из керамического блока. Это красиво)

Подготовительный этап для протезирования при помощи CAD/CAM — технологии совпадает с традиционно подготовкой полости рта к лечению. Он включает профессиональную гигиену и санацию полости рта, восстановление и препарирование опорных зубов.

Для идеальной эстетики требуется индивидуализация готовой реставрации: её подкрашивание зубным техником. На этом может потребоваться отдельных визит.

Высокая стоимость лечения.

При помощи CAD/CAM можно создать любые несъёмные конструкции: как цельнокерамические, так и металлические. Коронки, вкладки, виниры, индивидуальные абатменты, мостовидные протезы, хирургические шаблоны. Спектр применения данной технологии постоянно растёт.

Перед протезированием зубов, как правило, требуется выполнить определённую подготовку полости рта. Объём подготовительного лечения определяется планом лечения, который составляется во время консультации при первом посещении стоматолога. Эта подготовка называется «санацией полости рта» и может включать следующие этапы:

Снятие зубных отложений (камня и налёта) не только сразу улучшает внешний вид зубов, но и устраняет источник возможного будущего воспаления. Эту процедуры выполняет врач-гигиенист. На этом этапе Вас также научат правильно ухаживать за своей полостью рта. Это является гарантией долгосрочного функционирования любой реставрации и конструкции после завершения основного лечения.

Её проводит стоматолог-хирург. Часто перед протезированием зубов необходимо удалить зубы или корни зубов, не подлежащих восстановлению. К таким зубам относят сильно разрушенные, подвижные зубы, зубы с очагами хронического воспаления у верхушек корней. В случае недостаточного объёма костной ткани для имплантации зубов проводится предварительная операция по её увеличению.

Лечение кариеса, периодонтита, заболеваний слизистой оболочки полости рта, замена старых пломб. Эндодонтическое лечение зубов перед их восстановление и покрытием коронками. Необходимость проведения описанных манипуляций в каждом случае решается индивидуально. Врач-ортопед должен быть уверен не только в своей работе, но и в качестве проделанной работы до него. Поэтому в некоторых случаях необходимо перелечивание корневых каналов зубов.

Кровоточивость десны, неприятный запах изо рта, подвижность зубов и наличие пародонтальных карманов. Эти симптомы свидетельствуют о проблемах с пародонтом. Они должны быть устранены до протезирования зубов.


Благодаря ортодонтическим методам лечения возможно переместить или изменить наклон зубов. Такая подготовка занимает определённое время (от 2-3 месяцев, до 2-3 лет). Однако она позволяет избежать депульпирования и «обтачивания» выдвинувшихся или деформированных зубов.

CAD/CAM технологии в ортопедической стоматологии

к.м.н., стоматолог-ортопед Ервандян Арутюн Гегамович

С момента изобретения человеком компьютера настала новая эра в науке, технике и просто в жизни человека. В то время как большинство людей способны использовать компьютерную технику максимум для общения в социальных сетях, скайпе и совершения онлайн покупок, другие уже давно используют компьютеры для совершения сложнейших математических измерений, 3D проектирования, программирования, изучения сопротивления материалов и усталостных нагрузок, а также в области CAD/CAM технологий. CAD/CAM - это аббревиатура, которая расшифровывается как computer-aided design/drafting и computer-aided manufacturing , что дословно переводится как компьютерная помощь в дизайне, разработке и компьютерная помощь в производстве, а по смыслу - это автоматизация производства и системы автоматизированного проектирования / разработки.

С развитием технологий, ортопедическая стоматология также прошла эволюция от времён бронзового человека, когда привязывались искусственные зубы золотой проволокой к соседним зубам, до современного человека, который использует технологию CAD/CAM.

(112.11 КБ) 3142 просмотра


В момент появления CAD/CAM, основными технологиями изготовления коронок и мостовидных протезов были старая и имеющая много недостатков технология штамповки и пайки, более перспективная и передовая технология литья и менее распространённые технологии, также лишённые недостатков штамповки и пайки, сверхпластичная формовка и спекание. С другой стороны, две последние технологии можно применять для очень ограниченного количества материалов, например, сверхпластичную формовку только для титана. CAD/CAM технология лишена всех недостатков, присущих технологиям литья, например, усадки, деформации, в том числе и при извлечении отлитых коронок, мостовидных протезов или их каркасов. Отсутствует опасность нарушения технологии, например, перегрева металла при литье или повторное использование литников, что приводит к изменению состава сплава. Отсутствует усадка каркаса после нанесения керамической облицовки, возможная деформация при снятии восковых колпачков с гипсовой модели, поры и раковины при литье, непролитые участки и т.д.. Основным недостатком технологии CAD/CAM является высокая себестоимость, что не позволяет широко внедриться этой технологии в ортопедическую стоматологию. Первоначальная технология CAD/CAM представляла из себя компьютер с необходимым программным обеспечением на котором производилось трёхмерное моделирование несъёмного протеза с последующим компьютерным фрезерованием с точностью до 0.8 микрон из цельного металлического или керамического блока.

Соответственно, расходными материалами для данной процедуры становились дорогостоящие блоки и фрезы, в основном твёрдосплавные. Благодаря дальнейшей эволюции CAD/CAM технологии, на смену компьютерному фрезерованию пришла технология 3D печати, которая позволила уменьшить себестоимость и дала возможность изготавливать объекты любой формы и сложности, которые невозможно было произвести до этого ни одной из существующих технологий. Например, благодаря 3D печати можно изготовить цельный полый объект с любой формой внутренней поверхности. Применительно к ортопедической стоматологии, можно изготовить полое тело протеза, что позволит не уменьшая прочности конструкции уменьшить его вес.

В свою очередь технологию 3D печати в стоматологии можно разделить на три ветви.
Первая ветвь - это 3D печать воском, например, каркаса мостовидного протеза, с последующим литьём. Фактически этот способ является более совершенной технологией моделирования конструкций протезов с присущими ей всеми недостатками литья. Т.е. можно смоделировать на компьютере и напечатать из воска идеальный каркас, но при литье опять столкнуться со всеми проблемами, присущими литью. Таким образом, данная технология устраняет все недостатки моделирования каркаса из воска, но не устраняет недостатки технологии литья.
Вторая ветвь - это 3D печать пластмассой. Данная технология позволяет получить как разборные модели челюстей, каркасы из беззольной пластмассы для литья, так и готовые протезы, например коронки или мостовидные протезы из композита, а также напечатать съёмные протезы.

В свою очередь 3D печать пластмассы производится двумя способами:

  • Терпомечать пластмассы
  • Светополимеризационная печать пластмассы
Термопечать можно использовать для 3D печати термопластами, например, съёмных протезов или же для печати беззольной пластмассой. Светополимеризационную печать можно использовать для печати как коронок из композитов, так и каркасов из беззольной пластмассы, съёмных протезов из акрилатов и полиуретана.

Технология термопечати воска и пластмассы схожи и чем-то похожи на принцип печати обычного цветного струйного принтера. Материал разогревается до температуры плавления и микрокаплями наносится, но в отличии от цветного струйного принтера, который печатает только в двух проекция 3D принтер печатает в трёх проекциях и соответственно не краской, а твёрдыми материалами. Благодаря нанесению материала микрокаплями достигается полная компенсация усадки материала.

Светополимеризационная печать похожа на термопечать и отличается только тем, что материал не нужно разогревать, так как он уже жидкий, а затвердевание т.е. полимеризация происходит под действием света синего спектра 445-470 нм.

Кардинально другой принцип используется при 3D печати металлом. Принцип заключается в нанесении одинарного слоя металлического порошка на подложку и спекание или точнее микросварку лазером микроскопических зёрен металла в необходимых участках слоя. После этого наносится сверху ещё один одинарный слой порошка металла, так же производится микросварка лазером микрозёрен металла уже не только между собой, но и с нижним слоем.

Таким образом, послойно печатается трёхмерный объект из металла. После завершения печати готовый металлический объект извлекается из порошка. Оставшийся порошок можно использовать повторно. Данная технология представляет из себя безотходное производство, которое в конечном счёте приводит к уменьшению себестоимости конструкции. А благодаря применению компьютерных технологий достигается высокие качество и точность порядка 1-10 микрон. Предлагаем вашему вниманию видеоролик о 3D печати металлом.
https://www.youtube.com/watch?v=qvl_O1M5Ykk
Такой же принцип печати используется при печати гипсом, только вместо лазера используется связующий агент, так называемый клей, соединяющий частички гипса. Однако печать гипсом не нашла применения в стоматологии, так как модели начали печатать из пластмассы.
Полная версия статьи

CAD/CAM системы – это технология разработки протезов, коронок и брекетов, основанная на принципе предварительного создания необходимой модели с последующей реализацией в конечный результат. Этот термин можно расшифровать как «проектирование и изготовление с задействованием компьютерных технологий» или в точной расшифровке «Computer-Aided Design» и «Computer-Aided Manufacture».

В наше время данный метод используется достаточно широко в самых разных областях, включая стоматологию, в то время как раньше он был задействован в основном в промышленных сферах.

CAD/CAM системы в стоматологии начали использоваться примерно десять лет назад. Они используются для того, чтобы изготавливать имплантаты, протезы, зубные коронки и многое другое. Изделия, выполненные с использованием такой технологии, отличаются высоким качеством и надежностью.

Сначала производят моделирование будущего протеза при помощи специального программного обеспечения на компьютере, а затем по созданной модели воспроизводят на фрезерном блоке.

Подробнее о том, что представляет собой CAD/CAM

  • CAD – это способ организации автоматического создания 3D-модели с использованием специального компьютерного ПО;
  • CAM – непосредственно производство указанного изделия при использовании заранее построенного трехмерного шаблона.

При использовании в работе данной системы используется следующее специализированное оборудование.

Оборудование Описание
Сканер Его используют для того, чтобы выполнить виртуальную модель челюсти и зубов пациента в 3D. Такие сканеры можно подразделить на те, которые снимают цифровое изображение непосредственно в ротовой полости, и те, которые оцифровывают заранее подготовленный гипсовый слепок.
Компьютер с предустановленной программой Снятую сканером модель челюсти обрабатывают посредством специализированного ПО, где моделируются виртуальные протезы для поврежденных зубов и последующая реставрация. Чем-то это напоминает редактор создания трехмерных изображений. Врач, работающий с таким обеспечением, самостоятельно задает форму, рельеф и прочие необходимые параметры для будущей модели зуба. Процесс происходит, как правило, в автоматическом режиме. По окончании проектирования модели файл с данными о ней отправляют на фрезерный станок.
Фрезерный станок Он автоматически вытачивает готовый продукт по модели, разработанной компьютерной программой. В него закладывается материал, из которого будет изготовлена коронка или винир - обычно это керамика, оксид циркония или металл. Причем оксид циркония наиболее предпочтителен для работ такого рода, поскольку он лучше воспринимается организмом (его биосовместимость даже выше, чем у золота), не вызывает аллергических реакций. Существуют исследования, которые подтверждают это.

При этом список изделий, которые можно выполнить с помощью данной системы моделирования, не ограничивается каркасом для коронок из .

Существуют стандарты размеров прилегания края , установленные английской компанией Renishaw:

  • 0-19 мкм – самый лучший уровень краевого прилегания;
  • 20-39 мкм – хороший уровень;
  • 49-79 мкм – прилегание удовлетворительное;
  • 80-119 мкм – пограничный приемлемый уровень;
  • более 120 мкм – максимально допустимый уровень, чтобы конструкция выполняла свои функции.

Отличительные свойства каждого вида CAD-технологий

CAD – система моделирования объектов посредством компьютера и специализированного ПО. Теперь для того, чтобы создать чертеж, не требуется много времени, не нужны бумага и чертежные наборы, возможность создавать модели на компьютере экономит массу времени.

Важно! Любой шаблон создается в трехмерном формате и может быть рассмотрен под различными углами. В случае возникновения ошибок и неточностей любую модель и деталь можно оперативно заменить, а как только все необходимые действия по моделированию будут выполнены, проект можно будет сдавать для создания на станке.

САМ – это непосредственно процесс выполнения модели по заданному шаблону, созданному по технологии CAD. Здесь также широко задействованы компьютерные системы, направленные на регулирование производственных механизмов. В этом случае от оператора станка требуется соответствующая настройка, дабы конечный объект принял нужную форму, а процесс выполнения соответствовал определенным инструкциям.

В итоге получается слаженная рабочая система – посредством технологии CAD составляется сама модель имплантата, а посредством CAM специалист выполняет руководство процессом создания детали.

Функционал CAD/CAM систем в стоматологических клиниках и лабораториях:

  • возможность создания моделей , и др.;
  • настройка автоматизации зубного моделирования – существует встроенная библиотека;
  • за один раз есть возможность моделирования до 16 зубов.
  • все изготовленные шаблоны могут быть сохранены в системе с целью дальнейшего использования;
  • процесс изготовления занимает пять стадий от непосредственно начала работы над макетом до работы фрезеровочного станка.

Каким образом данные системы могут быть использованы в стоматологии?

Самый популярный процесс, где они используются, – это изготовление заготовок зубных пломб и получение конечного продукта в виде самой пломбы. Из-за использования в стоматологии определенного количества материалов для выполнения имплантатов, не каждый раз есть возможность добиться желаемого результата, отличающегося высокой надежностью.

Однако благодаря CAD/CAM системам есть возможность расширить выбор используемых для изготовления пломбы материалов. Например, так можно создавать долговечные высокого качества.

Вот какими плюсами обладает использование автоматизированных систем в протезировании по сравнению с привычными методами.

  1. Есть возможность изготовления основы для пломбы естественного цвета, не отличающегося от натурального цвета эмали.
  2. Пломбы, изготовленные из керамики, отличаются повышенной стойкостью.
  3. Такой материал, как керамика, отлично воспринимается организмом.
  4. Есть возможность укрепления разрушенных зубов.

Процесс установки коронок с использованием автоматизированной системы

Метод изготовления имплантатов по данной системе можно считать наиболее современным и высокотехнологичным. Поэтому он уже широко используется в стоматологических клиниках высокого уровня.

Интересно! Коронки, изготовленные по данной методике, отличаются повышенной прочностью, комфортом установки и использования и точной анатомической формой.

Пошаговый процесс выполнения действий с использованием технологии CAD/CAM:

  • предварительная подготовка тканей зуба, установка временного имплантата;
  • изготовление цифрового слепка, создание модели протеза и его выполнение на станке;
  • инсталляция готового протеза на предварительно обточенный зуб с последующим закреплением.

Такая процедура сводит к минимуму возможность возникновения врачебных ошибок или последующих осложнений, однако требуется высокий уровень компетенции со стороны стоматолога. Автоматизированные системы CAD/CAM обладают такими характеристиками, как повышенная точность и короткое время изготовления даже технологически сложных конструкций. Таким образом, эта методика является более приоритетной по сравнению с остальными.

Видео — Изготовление протеза из оксида циркония

Подробный процесс изготовления

Рассмотрим более подробно схему разработки и выполнения каркаса из диоксида циркония.

  1. Поступление слепка челюсти и зубов пациента во фрезерный центр.
  2. Сканирование шаблона и преобразование в файл, который будет обрабатываться компьютерной программой. Далее при помощи специализированного ПО для моделирования создается шаблон каркаса, супракструктуры и т.д. В данном случае CAD-модуль (программа) предлагает выбрать необходимую конструкцию, а оператор видоизменяет ее таким образом, чтобы она стала нужной формы.
  3. Тщательно осмотрев модель конструкции со всех ракурсов, можно задать различные варианты покрытий, проверить все сечения и под конец разработать каркас, отвечающий всем заявленным требованиям.
  4. После того, как процесс моделирования завершен, файл направляют непосредственно на фрезерную машину, и на ней уже происходит создание готового каркаса. Под конец работы осуществляется изготовление готовой трехмерной модели из нужного материала. В случае, если протез выполняется из диоксида циркония, он отправляется дальше в специальную печь для агломерации (запекания).
  5. В печи заготовка достигает необходимой прочности, приобретает нужный размер и цвет. Данный процесс происходит при температуре от 520 градусов по Цельсию, затем готовый протез поступает непосредственно в работу к технику.

Протезы, изготовленные с использованием технологии CAD/CAM из такого материала, как диоксид циркония, обладают гораздо более высокими характеристиками, чем коронки из металлосодержащего материала.

Интересно! Протезы максимально приближены к естественному цвету эмали, который задается на этапе выполнения каркаса.

Поверхность покрывают немецкой керамикой Creation, обладающей повышенной светопроницаемостью и имеющей более обширный цветовой спектр.

Толщина такого каркаса не превышает 0,4 мм, поэтому можно минимизировать обтачивание зубной эмали. Однако такая толщина никак не снижает прочность имплантата, поскольку оксид циркония в разы прочнее, чем другие материалы. К тому же, он не подвержен коррозии и деформации и служит значительно дольше.

Плюсы и минусы данной технологии

CAD/CAM в стоматологической практике и протезировании зубов являются очень востребованными в современных клиниках, так как обладают следующими преимуществами:

  • анатомическая точность;
  • возможность изготовления из материалов высокой прочности (к примеру, титана или упомянутого диоксида циркония);
  • можно использовать в работе с наиболее запущенными случаями;
  • возможность врачебной ошибки минимизирована;
  • следовательно, практически исключен человеческий фактор;
  • высокий комфорт ношения, коронка садится идеально;
  • нулевой уровень травматичности.

Врач может продемонстрировать цифровую модель пациенту, и тот будет сразу проинформирован о том, как проходит процесс изготовления и имплантации и как будет выглядеть результат.

Протезы, изготовленные таким методом, практически не деформируются и не меняют местоположения. Высокая точность изготовления – около 25 мкм (сравним с ручным литьем – у него точность обычно 100 и более мкм).

Интересно! Если в качестве материала выбран оксид циркония, то эмаль и дентин не пострадают.

К сожалению, главным недостатком использования этой технологии можно назвать высокую стоимость. Однако это отличная инвестиция в собственное здоровье, учитывая повышенную надежность и отсутствие вреда для организма.

Краткий обзор различных моделей

В нашей стране используются CAD/CAM системы:

  • Cerec;
  • Katana;
  • Organical и др.

Обзор систем Dyamach

Для изготовления протезных конструкций используется фрезерное оборудование открытого типа DT2, которое дает возможность использования практически любых материалов, в том числе металлов, полимеров, керамики и т.д. Обладает повышенной точностью, а станок может работать непрерывно.

Достоинства моделей данного производителя:

  • обширный угол поворота рабочих осей (А на 360 гр., В на +/- 43 гр);
  • движение шпинделя с высокой скоростью (до 60000 об/мин);
  • возможность обработать сложные металлические конструкции и абатменты (в частности, из титана);
  • более широкий набор используемых фрез (от 3 до 6 мм), в то время как многие подобные модели ограничиваются только фрезами 6 мм;
  • обладают более низкой стоимостью по сравнению с другим профессиональным оборудованием;
  • на фрезеровку затрачивается меньше времени.

Интересно! Станок Dyamach DT-2 оснащен двигателем Mitsubishi, он позволяет увеличить точность и скорость работы. Эта система обладает идеальным соотношением цены и качества.

Обзор систем Roland (производства Японии)

Эти открытые системы отличаются пониженным уровнем шума и крайне высокой точностью при изготовлении изделий из циркония.

К плюсам фрезерной установки DWX 51D можно отнести следующие факторы:

  • есть возможность обработки циркониевых коронок с высокой точностью, может быть использован безметалловый материал Trinia, обладающий повышенным уровнем прочности;
  • можно производить работу одновременно по пяти осям;
  • точность увеличена за счет того, что угол наклон по оси B больше до 30 градусов;
  • на изготовление одной коронки уходит около 30 минут, если изготавливают одновременно две, то время не превышает 45 минут, следовательно, при обработке сразу нескольких заготовок время за одну становится меньше. На 20 коронок уйдет приблизительно 6 часов;
  • за счет особой формы держателя дисков исключена возможность проворачивания;
  • реализован механизм автозамены фрез;
  • прибор оснащен ионизатором.

Вот что можно сказать о работающей по стеклокерамике фрезерной установке DWX 4W:

  • можно выполнять работу над тремя заготовками без остановки, что существенно увеличивает скорость работы;
  • есть возможность работы с заготовками из стеклокерамики;
  • фрезы из алмаза;
  • фрезеровку можно выполнять по четырем осям с углом поворота 360 градусов;
  • организована возможность автоматической подачи инструментов по четырем станциям;
  • шпиндель со скоростью 60000 оборотов в минуту (Jaeger);
  • охлаждение за счет воды, система очистки оборудования;
  • система индикации оповещения о производимых операциях;
  • хорошая совместимость со многими моделями сканеров и различным программным обеспечением;
  • отличные условия продажи и гарантии по сравнению с другими производителями, высокая востребованность благодаря широким возможностям и хорошей цене.

Обзор фрезерных станков немецкого производства Sirona

Это гибкая система, функциональные части которой отлично работают как вместе, так и по отдельности. Эти устройства доступны даже для небольших лабораторий, так как находятся в среднем ценовом сегменте.

Плюсы систем Sirona:

  • высокая производительность повышает прибыль клиники;
  • гибкость в работе с функциональным программным обеспечением;
  • возможность модернизировать устройства и устанавливать дополнительные модули.

Интересно! Аппараты производства данной фирмы inLab MC XL и Cerec MC XL обладают высокими показателями точности и скорости, переключение между различными режимами работой занимает всего несколько минут. При работе с большим количеством обрабатываемых деталей это создает ощутимую выгоду.

Стоит обратить внимание также на сканер inEos Blue. Он оснащен интуитивно понятной системой управления, легок в установке дополнений и осуществляет большие масштабы сканирования.

Итальянское оборудование от фирмы ZirkonZahn

Это закрытая система, в ней присутствуют следующие компоненты: непосредственно фрезерная установка, сканер, набор программного обеспечения CAD/CAM и компьютер.

Достоинства:

  • возможность производства цельных имплантатов из циркония;
  • не требуется отдавать большие суммы за обновления;
  • материалы от компании, обладающие высоким качеством;
  • есть возможность обучения в интерактивном режиме;
  • оперативная и доступная поддержка.

Интересно! Эта пятиосевая система обладает более демократичной ценой по сравнению с конкурентами, но ее качество при этом остается на достойном уровне, поэтому она прекрасно подойдет для установки в стоматологической клинике.

Обзор систем от производителя Wieland (Германия)

Этот производитель известен тем, что его оборудование обладает самыми компактными размерами. Вес системы Zenotech Mini достигает всего 45 кг, она может быть установлена на рабочий стол. При этом функционал нисколько не страдает.

Это отличный вариант для клиник и лабораторий с небольшой площадью. Станок оснащается четырехосевой технологией, которая позволяет выполнять любые виды работ.

Zenotech Select – это фрезерное устройство с пятью осями, оно обладает более широким функционалом и мощностью, однако и цена его выше.

Интересно! Также этот производитель поставляет хорошие сканеры, к примеру, Zeno Scan S1000. Они прекрасно экономят время и обеспечивают высокую точность изготовления.

К достоинствам CAD/CAM систем можно отнести следующее:

  • небольшой размер;
  • удобное в работе ПО, не требующее постоянного обновления;
  • высокая производительность, можно осуществлять изготовление 1800 единиц в месяц.

Немецкий производитель оборудования IMES-ICORE

Данный производитель поставляет на рынок модель CoriTec 550i, которая обладает самым высоким качеством фрезеровочных работ при обработке наиболее твердых материалов.

Оси с гранитным основанием на основе инновационных разработок позволяют добиться идеально гладкой поверхности. Скорость шпинделей достигает 80000 оборотов в минуту, что дает гарантию получения высочайшей точности; полученные изделия отличаются долговечностью.

Эта модель из более высокого ценового сегмента, однако она оправдывает себя расширенными функциями и высокими стандартами качества и надежности.

Плюсы данной модели:

  • производительность выше, чем у конкурентов;
  • способность работы круглые сутки;
  • надежные электродвигатели с высокой точностью;
  • есть возможность работы с различными материалами, в том числе такими, как хром и кобальт;
  • самая высокая точность работы.

Особенности систем

Стоит несколько слов сказать об особенностях сканирования имплантатов среди разных систем.

  1. CEREC IN LAB фирма (SIRONA): использование трех распознанных насечек с порогом распознавания 100 мкм
  2. PRECIDENT фирма (DCS): три насечки, порог распознавания аналогично предыдущему 100 мкм.
  3. Система HINT ELS фирма (HINT ELS GmbH): одна распознаваемая насечка, порог распознавания 150 мкм.
  4. Система EVEREST фирма (KAVO): ряд насечек не распознан, порог распознавания более 150 мкм.

Соответственно, наиболее хороший порог распознавания у систем PRECIDENT и CEREC IN LAB, значит, они могут качественно отобразить микротрещины и грани, которые могут быть незаметны для других сканеров. В таком случае виртуальная модель будет идентична реальной.

Отличия

Давайте разберем, какова разница для пациента между коронками, выполненными с использованием систем CAD/CAM и обычным методом.

И те, и другие коронки могут быть практически идентичными по внешнему виду, а в итоге пациенту будет предоставлена реставрация с высоким уровнем эстетичности, можно добиться красивой улыбки и полноценного функционала зубов. Однако при использовании автоматизированных систем моделирования можно добиться высокой скорости выполнения процесса протезирования.

Обратите внимание! Изготовление коронок таким образом занимает гораздо меньше времени.

Вместо обычного слепка можно использовать сканер, который работает напрямую в полости рта, что является гораздо более приятным для пациента.

Пациент имеет возможность наблюдать за процессом моделирования его уникальной коронки и смотреть, как она вытачивается. Это информативно, красиво и интересно.

Подготовка к протезированию в обоих случаях будет идентичной – это обычная процедура, включающая в себя дезинфекцию и восстановление зубов.

Подводим итоги

Компьютерные технологии уверенно занимают свое место в современной стоматологии. Можно прогнозировать, что уже через несколько лет в большинстве современных клиник будут задействованы технологии протезирования с использованием систем CAD/CAM. В большинстве лабораторий, стремящихся идти в ногу со временем, такое оборудование уже широко используется.

Эту систему смело можно назвать технологией будущего, поэтому стоит с особым вниманием подойти к изучению возможностей и особенностей различных моделей, чтобы было проще сделать выбор.